mot_jde_infer.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
import paddle
from benchmark_utils import PaddleInferBenchmark
22
from preprocess import preprocess
23 24 25 26 27 28 29 30

from tracker import JDETracker
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as MOTTimer

from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
31
from infer import Detector, get_test_images, print_arguments, PredictConfig
32 33 34 35 36 37 38 39

# Global dictionary
MOT_SUPPORT_MODELS = {
    'JDE',
    'FairMOT',
}


40
class JDE_Detector(Detector):
41 42 43 44
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
45
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
46
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
47
        batch_size (int): size of pre batch in inference
48 49 50 51 52 53 54 55 56 57 58 59
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
60
                 device='CPU',
61
                 run_mode='fluid',
62
                 batch_size=1,
63 64 65 66 67 68
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
69 70 71
        super(JDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
72
            device=device,
73 74
            run_mode=run_mode,
            batch_size=batch_size,
75 76 77 78 79 80
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
81
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
82 83 84 85 86
        assert pred_config.tracker, "Tracking model should have tracker"
        tp = pred_config.tracker
        conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0.
        tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7
        metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean'
G
George Ni 已提交
87 88 89 90
        self.tracker = JDETracker(
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)
91

92
    def postprocess(self, pred_dets, pred_embs, threshold):
93 94
        online_targets = self.tracker.update(pred_dets, pred_embs)
        online_tlwhs, online_ids = [], []
G
George Ni 已提交
95
        online_scores = []
96 97 98
        for t in online_targets:
            tlwh = t.tlwh
            tid = t.track_id
G
George Ni 已提交
99
            tscore = t.score
100
            if tscore < threshold: continue
101 102 103 104
            vertical = tlwh[2] / tlwh[3] > 1.6
            if tlwh[2] * tlwh[3] > self.tracker.min_box_area and not vertical:
                online_tlwhs.append(tlwh)
                online_ids.append(tid)
G
George Ni 已提交
105 106
                online_scores.append(tscore)
        return online_tlwhs, online_scores, online_ids
107

108
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
109 110
        '''
        Args:
111
            image_list (list): list of image
112 113
            threshold (float): threshold of predicted box' score
        Returns:
114
            online_tlwhs, online_scores, online_ids (np.ndarray)
115 116
        '''
        self.det_times.preprocess_time_s.start()
117
        inputs = self.preprocess(image_list)
118
        self.det_times.preprocess_time_s.end()
G
George Ni 已提交
119

120 121 122 123 124 125
        pred_dets, pred_embs = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

G
George Ni 已提交
126 127 128 129 130 131
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()

132 133 134 135 136 137 138 139 140 141 142
        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()
            embs_tensor = self.predictor.get_output_handle(output_names[1])
            pred_embs = embs_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
143 144
        online_tlwhs, online_scores, online_ids = self.postprocess(
            pred_dets, pred_embs, threshold)
145 146
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
G
George Ni 已提交
147
        return online_tlwhs, online_scores, online_ids
148 149


G
George Ni 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def write_mot_results(filename, results, data_type='mot'):
    if data_type in ['mot', 'mcmot', 'lab']:
        save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    with open(filename, 'w') as f:
        for frame_id, tlwhs, tscores, track_ids in results:
            if data_type == 'kitti':
                frame_id -= 1
            for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
                if track_id < 0:
                    continue
                x1, y1, w, h = tlwh
                x2, y2 = x1 + w, y1 + h
                line = save_format.format(
                    frame=frame_id,
                    id=track_id,
                    x1=x1,
                    y1=y1,
                    x2=x2,
                    y2=y2,
                    w=w,
                    h=h,
                    score=score)
                f.write(line)


G
George Ni 已提交
180 181 182 183 184
def predict_image(detector, image_list):
    results = []
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
185
            detector.predict([frame], FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
186 187 188 189 190 191 192
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            online_tlwhs, online_scores, online_ids = detector.predict(
193
                [frame], FLAGS.threshold)
G
George Ni 已提交
194 195 196 197 198
            online_im = mot_vis.plot_tracking(
                frame, online_tlwhs, online_ids, online_scores, frame_id=i)
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
199 200 201 202
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
G
George Ni 已提交
203 204


205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer = MOTTimer()
G
George Ni 已提交
226
    results = []
227 228 229 230 231
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
G
George Ni 已提交
232
        online_tlwhs, online_scores, online_ids = detector.predict(
233
            [frame], FLAGS.threshold)
234 235
        timer.toc()

G
George Ni 已提交
236 237
        results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
        fps = 1. / timer.average_time
238 239 240 241
        online_im = mot_vis.plot_tracking(
            frame,
            online_tlwhs,
            online_ids,
G
George Ni 已提交
242
            online_scores,
243
            frame_id=frame_id,
G
George Ni 已提交
244
            fps=fps)
G
George Ni 已提交
245 246 247 248 249 250 251
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                online_im)
252 253 254 255 256 257 258 259
        frame_id += 1
        print('detect frame:%d' % (frame_id))
        im = np.array(online_im)
        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
G
George Ni 已提交
260
    if FLAGS.save_mot_txts:
G
George Ni 已提交
261 262 263
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
264 265 266 267
    writer.release()


def main():
G
George Ni 已提交
268
    pred_config = PredictConfig(FLAGS.model_dir)
269
    detector = JDE_Detector(
270 271
        pred_config,
        FLAGS.model_dir,
272
        device=FLAGS.device,
273 274 275 276 277 278 279 280 281 282 283 284
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
G
George Ni 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('MOT')
311 312 313 314 315 316 317


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
318 319 320
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
321 322

    main()