mot_jde_infer.py 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
20
from collections import defaultdict
21

22
import paddle
23 24
from paddle.inference import Config
from paddle.inference import create_predictor
25 26

from preprocess import preprocess
27
from utils import argsparser, Timer, get_current_memory_mb
28
from infer import Detector, get_test_images, print_arguments, PredictConfig
29 30 31 32 33
from benchmark_utils import PaddleInferBenchmark

from ppdet.modeling.mot.tracker import JDETracker
from ppdet.modeling.mot.visualization import plot_tracking_dict
from ppdet.modeling.mot.utils import MOTTimer, write_mot_results
34 35 36 37 38 39 40 41

# Global dictionary
MOT_SUPPORT_MODELS = {
    'JDE',
    'FairMOT',
}


42
class JDE_Detector(Detector):
43 44 45 46
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
47
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
48
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
49
        batch_size (int): size of pre batch in inference
50 51 52 53 54 55 56 57 58 59 60 61
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
62
                 device='CPU',
63
                 run_mode='fluid',
64
                 batch_size=1,
65 66 67 68 69 70
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
71 72 73
        super(JDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
74
            device=device,
75 76
            run_mode=run_mode,
            batch_size=batch_size,
77 78 79 80 81 82
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
83
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
84
        assert pred_config.tracker, "Tracking model should have tracker"
85 86
        self.num_classes = len(pred_config.labels)

87
        tp = pred_config.tracker
F
Feng Ni 已提交
88 89
        min_box_area = tp['min_box_area'] if 'min_box_area' in tp else 200
        vertical_ratio = tp['vertical_ratio'] if 'vertical_ratio' in tp else 1.6
90 91 92
        conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0.
        tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7
        metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean'
93

G
George Ni 已提交
94
        self.tracker = JDETracker(
95
            num_classes=self.num_classes,
F
Feng Ni 已提交
96 97
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
G
George Ni 已提交
98 99 100
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)
101

102
    def postprocess(self, pred_dets, pred_embs, threshold):
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        online_targets_dict = self.tracker.update(pred_dets, pred_embs)

        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        for cls_id in range(self.num_classes):
            online_targets = online_targets_dict[cls_id]
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                tscore = t.score
                if tscore < threshold: continue
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs[cls_id].append(tlwh)
                online_ids[cls_id].append(tid)
                online_scores[cls_id].append(tscore)
G
George Ni 已提交
122
        return online_tlwhs, online_scores, online_ids
123

124
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
125 126
        '''
        Args:
127
            image_list (list): list of image
128 129
            threshold (float): threshold of predicted box' score
        Returns:
130
            online_tlwhs, online_scores, online_ids (dict[np.array])
131 132
        '''
        self.det_times.preprocess_time_s.start()
133
        inputs = self.preprocess(image_list)
134
        self.det_times.preprocess_time_s.end()
G
George Ni 已提交
135

136 137 138 139 140 141
        pred_dets, pred_embs = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

G
George Ni 已提交
142 143 144 145 146 147
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()

148 149 150 151 152 153 154 155 156 157 158
        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()
            embs_tensor = self.predictor.get_output_handle(output_names[1])
            pred_embs = embs_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
159 160
        online_tlwhs, online_scores, online_ids = self.postprocess(
            pred_dets, pred_embs, threshold)
161 162
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
G
George Ni 已提交
163
        return online_tlwhs, online_scores, online_ids
164 165


G
George Ni 已提交
166 167
def predict_image(detector, image_list):
    results = []
168 169
    num_classes = detector.num_classes
    data_type = 'mcmot' if num_classes > 1 else 'mot'
G
George Ni 已提交
170
    image_list.sort()
171
    for frame_id, img_file in enumerate(image_list):
G
George Ni 已提交
172 173
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
174
            detector.predict([frame], FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
175 176 177 178
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
179
            print('Test iter {}, file name:{}'.format(frame_id, img_file))
G
George Ni 已提交
180 181
        else:
            online_tlwhs, online_scores, online_ids = detector.predict(
182
                [frame], FLAGS.threshold)
183 184
            online_im = plot_tracking_dict(frame, num_classes, online_tlwhs,
                                           online_ids, online_scores, frame_id)
G
George Ni 已提交
185 186 187
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
188 189 190 191
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
G
George Ni 已提交
192 193


194
def predict_video(detector, camera_id):
195
    video_name = 'mot_output.mp4'
196 197 198 199 200
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
201
    # Get Video info : resolution, fps, frame count
202 203
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
204 205 206 207
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

208 209 210
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
211
    if not FLAGS.save_images:
212
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
G
George Ni 已提交
213
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
214 215
    frame_id = 0
    timer = MOTTimer()
216 217 218
    results = defaultdict(list)  # support single class and multi classes
    num_classes = detector.num_classes
    data_type = 'mcmot' if num_classes > 1 else 'mot'
219 220 221 222 223
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
G
George Ni 已提交
224
        online_tlwhs, online_scores, online_ids = detector.predict(
225
            [frame], FLAGS.threshold)
226 227
        timer.toc()

228 229 230 231
        for cls_id in range(num_classes):
            results[cls_id].append((frame_id + 1, online_tlwhs[cls_id],
                                    online_scores[cls_id], online_ids[cls_id]))

G
George Ni 已提交
232
        fps = 1. / timer.average_time
233
        im = plot_tracking_dict(
234
            frame,
235
            num_classes,
236 237
            online_tlwhs,
            online_ids,
G
George Ni 已提交
238
            online_scores,
239
            frame_id=frame_id,
G
George Ni 已提交
240
            fps=fps)
G
George Ni 已提交
241 242 243 244 245
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
246
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
247 248
        else:
            writer.write(im)
249

250
        frame_id += 1
251
        print('detect frame: %d' % (frame_id))
252 253 254 255
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
G
George Ni 已提交
256
    if FLAGS.save_mot_txts:
G
George Ni 已提交
257 258
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
259 260

        write_mot_results(result_filename, results, data_type, num_classes)
G
George Ni 已提交
261 262 263

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
264 265
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
266 267 268 269
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
270 271 272


def main():
G
George Ni 已提交
273
    pred_config = PredictConfig(FLAGS.model_dir)
274
    detector = JDE_Detector(
275 276
        pred_config,
        FLAGS.model_dir,
277
        device=FLAGS.device,
278 279 280 281 282 283 284 285 286 287 288 289
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
G
George Ni 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('MOT')
316 317 318 319 320 321 322


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
323 324 325
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
326 327

    main()