mot_sde_infer.py 32.4 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18
import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20
import glob
21 22 23 24 25
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
26 27 28 29
from preprocess import decode_image

# add python path
import sys
W
wangguanzhong 已提交
30
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
31
sys.path.insert(0, parent_path)
32

W
wangguanzhong 已提交
33 34
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor
from mot_utils import argsparser, Timer, get_current_memory_mb, video2frames, _is_valid_video
F
Feng Ni 已提交
35
from mot.tracker import JDETracker, DeepSORTTracker, OCSORTTracker
36
from mot.utils import MOTTimer, write_mot_results, get_crops, clip_box, flow_statistic
W
wangguanzhong 已提交
37
from mot.visualize import plot_tracking, plot_tracking_dict
38

F
Feng Ni 已提交
39 40 41 42
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

43 44 45 46 47

class SDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        tracker_config (str): tracker config path
49
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
50
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
51
        batch_size (int): size of pre batch in inference
52 53 54 55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
59 60 61 62 63 64 65 66 67
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
68 69
        reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
        mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
70 71 72 73
    """

    def __init__(self,
                 model_dir,
74
                 tracker_config,
75
                 device='CPU',
76
                 run_mode='paddle',
77 78
                 batch_size=1,
                 trt_min_shape=1,
79 80
                 trt_max_shape=1280,
                 trt_opt_shape=640,
81 82
                 trt_calib_mode=False,
                 cpu_threads=1,
83 84 85
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
86 87 88 89 90
                 save_images=False,
                 save_mot_txts=False,
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False,
91 92
                 reid_model_dir=None,
                 mtmct_dir=None):
93 94 95 96 97 98 99 100 101 102
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
103 104 105
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
106 107 108 109 110 111
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

112 113 114 115
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

116
        # reid config
117 118 119 120 121 122
        self.use_reid = False if reid_model_dir is None else True
        if self.use_reid:
            self.reid_pred_config = self.set_config(reid_model_dir)
            self.reid_predictor, self.config = load_predictor(
                reid_model_dir,
                run_mode=run_mode,
123
                batch_size=50,  # reid_batch_size
124 125 126 127 128 129 130 131 132
                min_subgraph_size=self.reid_pred_config.min_subgraph_size,
                device=device,
                use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn)
133 134 135
        else:
            self.reid_pred_config = None
            self.reid_predictor = None
136

137 138 139 140 141 142
        assert tracker_config is not None, 'Note that tracker_config should be set.'
        self.tracker_config = tracker_config
        tracker_cfg = yaml.safe_load(open(self.tracker_config))
        cfg = tracker_cfg[tracker_cfg['type']]

        # tracker config
143 144
        self.use_deepsort_tracker = True if tracker_cfg[
            'type'] == 'DeepSORTTracker' else False
F
Feng Ni 已提交
145 146 147
        self.use_ocsort_tracker = True if tracker_cfg[
            'type'] == 'OCSORTTracker' else False

148
        if self.use_deepsort_tracker:
149 150
            if self.reid_pred_config is not None and hasattr(
                    self.reid_pred_config, 'tracker'):
151 152
                cfg = self.reid_pred_config.tracker
            budget = cfg.get('budget', 100)
153 154
            max_age = cfg.get('max_age', 30)
            max_iou_distance = cfg.get('max_iou_distance', 0.7)
155 156 157
            matching_threshold = cfg.get('matching_threshold', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
158 159

            self.tracker = DeepSORTTracker(
160
                budget=budget,
161 162
                max_age=max_age,
                max_iou_distance=max_iou_distance,
163 164
                matching_threshold=matching_threshold,
                min_box_area=min_box_area,
165
                vertical_ratio=vertical_ratio, )
F
Feng Ni 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

        elif self.use_ocsort_tracker:
            det_thresh = cfg.get('det_thresh', 0.4)
            max_age = cfg.get('max_age', 30)
            min_hits = cfg.get('min_hits', 3)
            iou_threshold = cfg.get('iou_threshold', 0.3)
            delta_t = cfg.get('delta_t', 3)
            inertia = cfg.get('inertia', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
            use_byte = cfg.get('use_byte', False)

            self.tracker = OCSORTTracker(
                det_thresh=det_thresh,
                max_age=max_age,
                min_hits=min_hits,
                iou_threshold=iou_threshold,
                delta_t=delta_t,
                inertia=inertia,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                use_byte=use_byte)
188
        else:
189
            # use ByteTracker
190 191
            use_byte = cfg.get('use_byte', False)
            det_thresh = cfg.get('det_thresh', 0.3)
192 193
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
194 195 196 197 198 199
            match_thres = cfg.get('match_thres', 0.9)
            conf_thres = cfg.get('conf_thres', 0.6)
            low_conf_thres = cfg.get('low_conf_thres', 0.1)

            self.tracker = JDETracker(
                use_byte=use_byte,
200
                det_thresh=det_thresh,
201 202 203 204 205
                num_classes=self.num_classes,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                match_thres=match_thres,
                conf_thres=conf_thres,
206 207
                low_conf_thres=low_conf_thres, )

208 209 210 211 212
        self.do_mtmct = False if mtmct_dir is None else True
        self.mtmct_dir = mtmct_dir

    def postprocess(self, inputs, result):
        # postprocess output of predictor
F
Feng Ni 已提交
213 214 215
        keep_idx = result['boxes'][:, 1] > self.threshold
        result['boxes'] = result['boxes'][keep_idx]
        np_boxes_num = [len(result['boxes'])]
216 217 218 219 220 221 222
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def reidprocess(self, det_results, repeats=1):
223
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
224 225 226 227 228
        pred_xyxys = pred_dets[:, 2:6]

        ori_image = det_results['ori_image']
        ori_image_shape = ori_image.shape[:2]
        pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
229 230

        if len(keep_idx[0]) == 0:
231 232 233
            det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
            det_results['embeddings'] = None
            return det_results
F
Feng Ni 已提交
234

235 236
        pred_dets = pred_dets[keep_idx[0]]
        pred_xyxys = pred_dets[:, 2:6]
237

238
        w, h = self.tracker.input_size
239
        crops = get_crops(pred_xyxys, ori_image, w, h)
F
Feng Ni 已提交
240

241
        # to keep fast speed, only use topk crops
242
        crops = crops[:50]  # reid_batch_size
243 244
        det_results['crops'] = np.array(crops).astype('float32')
        det_results['boxes'] = pred_dets[:50]
F
Feng Ni 已提交
245

246
        input_names = self.reid_predictor.get_input_names()
247
        for i in range(len(input_names)):
248 249
            input_tensor = self.reid_predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(det_results[input_names[i]])
250

W
wangguanzhong 已提交
251
        # model prediction
252
        for i in range(repeats):
253 254
            self.reid_predictor.run()
            output_names = self.reid_predictor.get_output_names()
255 256
            feature_tensor = self.reid_predictor.get_output_handle(output_names[
                0])
257 258
            pred_embs = feature_tensor.copy_to_cpu()

259 260 261 262
        det_results['embeddings'] = pred_embs
        return det_results

    def tracking(self, det_results):
263
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
264 265
        pred_embs = det_results.get('embeddings', None)

266
        if self.use_deepsort_tracker:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            # use DeepSORTTracker, only support singe class
            self.tracker.predict()
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs, online_scores, online_ids = [], [], []
            if self.do_mtmct:
                online_tlbrs, online_feats = [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
                    continue
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
                if self.do_mtmct:
                    online_tlbrs.append(t.to_tlbr())
                    online_feats.append(t.feat)

            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            if self.do_mtmct:
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']

                tracking_outs['feat_data'] = {}
299 300
                for _tlbr, _id, _feat in zip(online_tlbrs, online_ids,
                                             online_feats):
301 302 303 304 305 306 307 308
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
309
            return tracking_outs
F
Feng Ni 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

        elif self.use_ocsort_tracker:
            # use OCSORTTracker, only support singe class
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for t in online_targets:
                tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
                tscore = float(t[4])
                tid = int(t[5])
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                if tlwh[2] * tlwh[3] > 0:
                    online_tlwhs[0].append(tlwh)
                    online_ids[0].append(tid)
                    online_scores[0].append(tscore)
            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            return tracking_outs

336
        else:
337 338 339 340
            # use ByteTracker, support multiple class
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
341
            if self.do_mtmct:
342 343
                online_tlbrs, online_feats = defaultdict(list), defaultdict(
                    list)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
            online_targets_dict = self.tracker.update(pred_dets, pred_embs)
            for cls_id in range(self.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                        continue
                    if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > self.tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
359 360 361 362 363 364 365 366 367 368 369 370 371 372
                    if self.do_mtmct:
                        online_tlbrs[cls_id].append(t.tlbr)
                        online_feats[cls_id].append(t.curr_feat)

            if self.do_mtmct:
                assert self.num_classes == 1, 'MTMCT only support single class.'
                tracking_outs = {
                    'online_tlwhs': online_tlwhs[0],
                    'online_scores': online_scores[0],
                    'online_ids': online_ids[0],
                }
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']
                tracking_outs['feat_data'] = {}
373 374
                for _tlbr, _id, _feat in zip(online_tlbrs[0], online_ids[0],
                                             online_feats[0]):
375 376 377 378 379 380 381 382 383
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
                return tracking_outs
384

385 386 387 388 389 390 391
            else:
                tracking_outs = {
                    'online_tlwhs': online_tlwhs,
                    'online_scores': online_scores,
                    'online_ids': online_ids,
                }
                return tracking_outs
392

393 394 395 396 397 398 399 400 401 402
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
                      seq_name=None):
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        if self.do_mtmct:
403
            mot_features_dict = {}  # cid_tid_fid feats
404
        else:
405 406 407 408 409 410 411
            mot_results = []
        for frame_id, img_file in enumerate(image_list):
            if self.do_mtmct:
                if frame_id % 10 == 0:
                    print('Tracking frame: %d' % (frame_id))
            batch_image_list = [img_file]  # bs=1 in MOT model
            frame, _ = decode_image(img_file, {})
F
Feng Ni 已提交
412
            if run_benchmark:
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
W
wangguanzhong 已提交
449

450
            else:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1
F
Feng Ni 已提交
473 474 475 476

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']
477

478 479 480 481 482 483 484
            if self.do_mtmct:
                feat_data_dict = tracking_outs['feat_data']
                mot_features_dict = dict(mot_features_dict, **feat_data_dict)
            else:
                mot_results.append([online_tlwhs, online_scores, online_ids])

            if visual:
485
                if len(image_list) > 1 and frame_id % 10 == 0:
486 487
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})
488 489
                if isinstance(online_tlwhs, defaultdict):
                    im = plot_tracking_dict(
490
                        frame,
491
                        num_classes,
492 493 494
                        online_tlwhs,
                        online_ids,
                        online_scores,
495 496
                        frame_id=frame_id,
                        ids2names=[])
497
                else:
498
                    im = plot_tracking(
499 500 501 502
                        frame,
                        online_tlwhs,
                        online_ids,
                        online_scores,
503
                        frame_id=frame_id)
504 505 506 507 508
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
509

510 511 512 513
        if self.do_mtmct:
            return mot_features_dict
        else:
            return mot_results
F
Feng Ni 已提交
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
532 533
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
534 535 536 537
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
538
        results = defaultdict(list)
539
        num_classes = self.num_classes
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels

        center_traj = None
        entrance = None
        records = None
        if self.draw_center_traj:
            center_traj = [{} for i in range(num_classes)]
        if num_classes == 1:
            id_set = set()
            interval_id_set = set()
            in_id_list = list()
            out_id_list = list()
            prev_center = dict()
            records = list()
            entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

558 559 560 561 562 563 564
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1
565

566 567
            timer.tic()
            seq_name = video_out_name.split('.')[0]
568 569
            mot_results = self.predict_image(
                [frame], visual=False, seq_name=seq_name)
570 571
            timer.toc()

572 573 574
            # bs=1 in MOT model
            online_tlwhs, online_scores, online_ids = mot_results[0]

F
Feng Ni 已提交
575
            # flow statistic for one class, and only for bytetracker
F
Feng Ni 已提交
576
            if num_classes == 1 and not self.use_deepsort_tracker and not self.use_ocsort_tracker:
577 578 579 580 581 582 583 584
                result = (frame_id + 1, online_tlwhs[0], online_scores[0],
                          online_ids[0])
                statistic = flow_statistic(
                    result, self.secs_interval, self.do_entrance_counting,
                    video_fps, entrance, id_set, interval_id_set, in_id_list,
                    out_id_list, prev_center, records, data_type, num_classes)
                records = statistic['records']

585
            fps = 1. / timer.duration
F
Feng Ni 已提交
586 587
            if self.use_deepsort_tracker or self.use_ocsort_tracker:
                # use DeepSORTTracker or OCSORTTracker, only support singe class
588 589
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
590 591 592 593 594 595
                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
596 597 598
                    fps=fps,
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance)
599 600 601 602
            else:
                # use ByteTracker, support multiple class
                for cls_id in range(num_classes):
                    results[cls_id].append(
603 604
                        (frame_id + 1, online_tlwhs[cls_id],
                         online_scores[cls_id], online_ids[cls_id]))
605 606 607 608 609 610 611 612
                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps,
613 614 615 616 617
                    ids2names=ids2names,
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance,
                    records=records,
                    center_traj=center_traj)
618

619 620 621 622 623
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')
            write_mot_results(result_filename, results)

            result_filename = os.path.join(
                self.output_dir,
                video_out_name.split('.')[-2] + '_flow_statistic.txt')
            f = open(result_filename, 'w')
            for line in records:
                f.write(line)
            print('Flow statistic save in {}'.format(result_filename))
            f.close()

639 640
        writer.release()

641 642 643 644 645 646 647
    def predict_mtmct(self, mtmct_dir, mtmct_cfg):
        cameras_bias = mtmct_cfg['cameras_bias']
        cid_bias = parse_bias(cameras_bias)
        scene_cluster = list(cid_bias.keys())
        # 1.zone releated parameters
        use_zone = mtmct_cfg.get('use_zone', False)
        zone_path = mtmct_cfg.get('zone_path', None)
648

649 650 651
        # 2.tricks parameters, can be used for other mtmct dataset
        use_ff = mtmct_cfg.get('use_ff', False)
        use_rerank = mtmct_cfg.get('use_rerank', False)
F
Feng Ni 已提交
652

653 654 655
        # 3.camera releated parameters
        use_camera = mtmct_cfg.get('use_camera', False)
        use_st_filter = mtmct_cfg.get('use_st_filter', False)
F
Feng Ni 已提交
656

657 658 659
        # 4.zone releated parameters
        use_roi = mtmct_cfg.get('use_roi', False)
        roi_dir = mtmct_cfg.get('roi_dir', False)
F
Feng Ni 已提交
660

661 662
        mot_list_breaks = []
        cid_tid_dict = dict()
F
Feng Ni 已提交
663

664 665 666
        output_dir = self.output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
F
Feng Ni 已提交
667

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        seqs = os.listdir(mtmct_dir)
        for seq in sorted(seqs):
            fpath = os.path.join(mtmct_dir, seq)
            if os.path.isfile(fpath) and _is_valid_video(fpath):
                seq = seq.split('.')[-2]
                print('ffmpeg processing of video {}'.format(fpath))
                frames_path = video2frames(
                    video_path=fpath, outpath=mtmct_dir, frame_rate=25)
                fpath = os.path.join(mtmct_dir, seq)

            if os.path.isdir(fpath) == False:
                print('{} is not a image folder.'.format(fpath))
                continue
            if os.path.exists(os.path.join(fpath, 'img1')):
                fpath = os.path.join(fpath, 'img1')
683 684
            assert os.path.isdir(fpath), '{} should be a directory'.format(
                fpath)
685 686 687 688 689
            image_list = glob.glob(os.path.join(fpath, '*.jpg'))
            image_list.sort()
            assert len(image_list) > 0, '{} has no images.'.format(fpath)
            print('start tracking seq: {}'.format(seq))

690 691
            mot_features_dict = self.predict_image(
                image_list, visual=False, seq_name=seq)
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

            cid = int(re.sub('[a-z,A-Z]', "", seq))
            tid_data, mot_list_break = trajectory_fusion(
                mot_features_dict,
                cid,
                cid_bias,
                use_zone=use_zone,
                zone_path=zone_path)
            mot_list_breaks.append(mot_list_break)
            # single seq process
            for line in tid_data:
                tracklet = tid_data[line]
                tid = tracklet['tid']
                if (cid, tid) not in cid_tid_dict:
                    cid_tid_dict[(cid, tid)] = tracklet

        map_tid = sub_cluster(
            cid_tid_dict,
F
Feng Ni 已提交
710
            scene_cluster,
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_camera=use_camera,
            use_st_filter=use_st_filter)

        pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
        if use_camera:
            gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
        else:
            gen_res(
                pred_mtmct_file,
                scene_cluster,
                map_tid,
                mot_list_breaks,
                use_roi=use_roi,
                roi_dir=roi_dir)
F
Feng Ni 已提交
727

728
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
729 730 731 732 733 734 735 736
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
737
            camera_results,
F
Feng Ni 已提交
738 739 740 741
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
742

743
def main():
744 745 746 747 748 749
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector = SDE_Detector(
        FLAGS.model_dir,
750
        tracker_config=FLAGS.tracker_config,
751 752
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
753
        batch_size=1,
754 755 756 757 758
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
759 760
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
761 762 763 764 765 766
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts,
        draw_center_traj=FLAGS.draw_center_traj,
        secs_interval=FLAGS.secs_interval,
        do_entrance_counting=FLAGS.do_entrance_counting,
767
        reid_model_dir=FLAGS.reid_model_dir,
768
        mtmct_dir=FLAGS.mtmct_dir, )
769 770 771

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
772
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
F
Feng Ni 已提交
773
    elif FLAGS.mtmct_dir is not None:
774
        with open(FLAGS.mtmct_cfg) as f:
F
Feng Ni 已提交
775
            mtmct_cfg = yaml.safe_load(f)
776
        detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
777 778
    else:
        # predict from image
779 780
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
781
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
782
        seq_name = FLAGS.image_dir.split('/')[-1]
783 784
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
785 786 787 788 789

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
790 791 792
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
793 794
                'precision': mode.split('_')[-1]
            }
795
            bench_log(detector, img_list, model_info, name='MOT')
796 797 798 799 800 801 802 803 804 805 806 807


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()