mot_sde_infer.py 30.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18
import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20
import glob
21 22 23 24 25
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
26 27 28 29
from preprocess import decode_image

# add python path
import sys
W
wangguanzhong 已提交
30
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
31
sys.path.insert(0, parent_path)
32

W
wangguanzhong 已提交
33 34
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor
from mot_utils import argsparser, Timer, get_current_memory_mb, video2frames, _is_valid_video
35
from mot.tracker import JDETracker, DeepSORTTracker
36
from mot.utils import MOTTimer, write_mot_results, get_crops, clip_box, flow_statistic
W
wangguanzhong 已提交
37
from mot.visualize import plot_tracking, plot_tracking_dict
38

F
Feng Ni 已提交
39 40 41 42
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

43 44 45 46 47

class SDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        tracker_config (str): tracker config path
49
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
50
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
51
        batch_size (int): size of pre batch in inference
52 53 54 55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
59 60 61 62 63 64 65 66 67
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
68 69
        reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
        mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
70 71 72 73
    """

    def __init__(self,
                 model_dir,
74
                 tracker_config,
75
                 device='CPU',
76
                 run_mode='paddle',
77 78
                 batch_size=1,
                 trt_min_shape=1,
79 80
                 trt_max_shape=1280,
                 trt_opt_shape=640,
81 82
                 trt_calib_mode=False,
                 cpu_threads=1,
83 84 85
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
86 87 88 89 90
                 save_images=False,
                 save_mot_txts=False,
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False,
91 92
                 reid_model_dir=None,
                 mtmct_dir=None):
93 94 95 96 97 98 99 100 101 102
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
103 104 105
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
106 107 108 109 110 111
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

112 113 114 115
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

116
        # reid config
117 118 119 120 121 122
        self.use_reid = False if reid_model_dir is None else True
        if self.use_reid:
            self.reid_pred_config = self.set_config(reid_model_dir)
            self.reid_predictor, self.config = load_predictor(
                reid_model_dir,
                run_mode=run_mode,
123
                batch_size=50,  # reid_batch_size
124 125 126 127 128 129 130 131 132
                min_subgraph_size=self.reid_pred_config.min_subgraph_size,
                device=device,
                use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn)
133 134 135
        else:
            self.reid_pred_config = None
            self.reid_predictor = None
136

137 138 139 140 141 142
        assert tracker_config is not None, 'Note that tracker_config should be set.'
        self.tracker_config = tracker_config
        tracker_cfg = yaml.safe_load(open(self.tracker_config))
        cfg = tracker_cfg[tracker_cfg['type']]

        # tracker config
143 144
        self.use_deepsort_tracker = True if tracker_cfg[
            'type'] == 'DeepSORTTracker' else False
145 146
        if self.use_deepsort_tracker:
            # use DeepSORTTracker
147 148
            if self.reid_pred_config is not None and hasattr(
                    self.reid_pred_config, 'tracker'):
149 150
                cfg = self.reid_pred_config.tracker
            budget = cfg.get('budget', 100)
151 152
            max_age = cfg.get('max_age', 30)
            max_iou_distance = cfg.get('max_iou_distance', 0.7)
153 154 155
            matching_threshold = cfg.get('matching_threshold', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
156 157

            self.tracker = DeepSORTTracker(
158
                budget=budget,
159 160
                max_age=max_age,
                max_iou_distance=max_iou_distance,
161 162
                matching_threshold=matching_threshold,
                min_box_area=min_box_area,
163
                vertical_ratio=vertical_ratio, )
164
        else:
165
            # use ByteTracker
166 167
            use_byte = cfg.get('use_byte', False)
            det_thresh = cfg.get('det_thresh', 0.3)
168 169
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
170 171 172 173 174 175
            match_thres = cfg.get('match_thres', 0.9)
            conf_thres = cfg.get('conf_thres', 0.6)
            low_conf_thres = cfg.get('low_conf_thres', 0.1)

            self.tracker = JDETracker(
                use_byte=use_byte,
176
                det_thresh=det_thresh,
177 178 179 180 181
                num_classes=self.num_classes,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                match_thres=match_thres,
                conf_thres=conf_thres,
182 183
                low_conf_thres=low_conf_thres, )

184 185 186 187 188
        self.do_mtmct = False if mtmct_dir is None else True
        self.mtmct_dir = mtmct_dir

    def postprocess(self, inputs, result):
        # postprocess output of predictor
F
Feng Ni 已提交
189 190 191
        keep_idx = result['boxes'][:, 1] > self.threshold
        result['boxes'] = result['boxes'][keep_idx]
        np_boxes_num = [len(result['boxes'])]
192 193 194 195 196 197 198
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def reidprocess(self, det_results, repeats=1):
199
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
200 201 202 203 204
        pred_xyxys = pred_dets[:, 2:6]

        ori_image = det_results['ori_image']
        ori_image_shape = ori_image.shape[:2]
        pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
205 206

        if len(keep_idx[0]) == 0:
207 208 209
            det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
            det_results['embeddings'] = None
            return det_results
F
Feng Ni 已提交
210

211 212
        pred_dets = pred_dets[keep_idx[0]]
        pred_xyxys = pred_dets[:, 2:6]
213

214
        w, h = self.tracker.input_size
215
        crops = get_crops(pred_xyxys, ori_image, w, h)
F
Feng Ni 已提交
216

217
        # to keep fast speed, only use topk crops
218
        crops = crops[:50]  # reid_batch_size
219 220
        det_results['crops'] = np.array(crops).astype('float32')
        det_results['boxes'] = pred_dets[:50]
F
Feng Ni 已提交
221

222
        input_names = self.reid_predictor.get_input_names()
223
        for i in range(len(input_names)):
224 225
            input_tensor = self.reid_predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(det_results[input_names[i]])
226

W
wangguanzhong 已提交
227
        # model prediction
228
        for i in range(repeats):
229 230
            self.reid_predictor.run()
            output_names = self.reid_predictor.get_output_names()
231 232
            feature_tensor = self.reid_predictor.get_output_handle(output_names[
                0])
233 234
            pred_embs = feature_tensor.copy_to_cpu()

235 236 237 238
        det_results['embeddings'] = pred_embs
        return det_results

    def tracking(self, det_results):
239
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
240 241
        pred_embs = det_results.get('embeddings', None)

242
        if self.use_deepsort_tracker:
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            # use DeepSORTTracker, only support singe class
            self.tracker.predict()
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs, online_scores, online_ids = [], [], []
            if self.do_mtmct:
                online_tlbrs, online_feats = [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
                    continue
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
                if self.do_mtmct:
                    online_tlbrs.append(t.to_tlbr())
                    online_feats.append(t.feat)

            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            if self.do_mtmct:
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']

                tracking_outs['feat_data'] = {}
275 276
                for _tlbr, _id, _feat in zip(online_tlbrs, online_ids,
                                             online_feats):
277 278 279 280 281 282 283 284
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
285
            return tracking_outs
286
        else:
287 288 289 290
            # use ByteTracker, support multiple class
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
291
            if self.do_mtmct:
292 293
                online_tlbrs, online_feats = defaultdict(list), defaultdict(
                    list)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
            online_targets_dict = self.tracker.update(pred_dets, pred_embs)
            for cls_id in range(self.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                        continue
                    if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > self.tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
309 310 311 312 313 314 315 316 317 318 319 320 321 322
                    if self.do_mtmct:
                        online_tlbrs[cls_id].append(t.tlbr)
                        online_feats[cls_id].append(t.curr_feat)

            if self.do_mtmct:
                assert self.num_classes == 1, 'MTMCT only support single class.'
                tracking_outs = {
                    'online_tlwhs': online_tlwhs[0],
                    'online_scores': online_scores[0],
                    'online_ids': online_ids[0],
                }
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']
                tracking_outs['feat_data'] = {}
323 324
                for _tlbr, _id, _feat in zip(online_tlbrs[0], online_ids[0],
                                             online_feats[0]):
325 326 327 328 329 330 331 332 333
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
                return tracking_outs
334

335 336 337 338 339 340 341
            else:
                tracking_outs = {
                    'online_tlwhs': online_tlwhs,
                    'online_scores': online_scores,
                    'online_ids': online_ids,
                }
                return tracking_outs
342

343 344 345 346 347 348 349 350 351 352
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
                      seq_name=None):
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        if self.do_mtmct:
353
            mot_features_dict = {}  # cid_tid_fid feats
354
        else:
355 356 357 358 359 360 361
            mot_results = []
        for frame_id, img_file in enumerate(image_list):
            if self.do_mtmct:
                if frame_id % 10 == 0:
                    print('Tracking frame: %d' % (frame_id))
            batch_image_list = [img_file]  # bs=1 in MOT model
            frame, _ = decode_image(img_file, {})
F
Feng Ni 已提交
362
            if run_benchmark:
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
W
wangguanzhong 已提交
399

400
            else:
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1
F
Feng Ni 已提交
423 424 425 426

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']
427

428 429 430 431 432 433 434
            if self.do_mtmct:
                feat_data_dict = tracking_outs['feat_data']
                mot_features_dict = dict(mot_features_dict, **feat_data_dict)
            else:
                mot_results.append([online_tlwhs, online_scores, online_ids])

            if visual:
435
                if len(image_list) > 1 and frame_id % 10 == 0:
436 437
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})
438 439
                if isinstance(online_tlwhs, defaultdict):
                    im = plot_tracking_dict(
440
                        frame,
441
                        num_classes,
442 443 444
                        online_tlwhs,
                        online_ids,
                        online_scores,
445 446
                        frame_id=frame_id,
                        ids2names=[])
447
                else:
448
                    im = plot_tracking(
449 450 451 452
                        frame,
                        online_tlwhs,
                        online_ids,
                        online_scores,
453
                        frame_id=frame_id)
454 455 456 457 458
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
459

460 461 462 463
        if self.do_mtmct:
            return mot_features_dict
        else:
            return mot_results
F
Feng Ni 已提交
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
482 483
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
484 485 486 487
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
488
        results = defaultdict(list)
489
        num_classes = self.num_classes
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels

        center_traj = None
        entrance = None
        records = None
        if self.draw_center_traj:
            center_traj = [{} for i in range(num_classes)]
        if num_classes == 1:
            id_set = set()
            interval_id_set = set()
            in_id_list = list()
            out_id_list = list()
            prev_center = dict()
            records = list()
            entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

508 509 510 511 512 513 514
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1
515

516 517
            timer.tic()
            seq_name = video_out_name.split('.')[0]
518 519
            mot_results = self.predict_image(
                [frame], visual=False, seq_name=seq_name)
520 521
            timer.toc()

522 523 524
            # bs=1 in MOT model
            online_tlwhs, online_scores, online_ids = mot_results[0]

F
Feng Ni 已提交
525 526
            # flow statistic for one class, and only for bytetracker
            if num_classes == 1 and not self.use_deepsort_tracker:
527 528 529 530 531 532 533 534
                result = (frame_id + 1, online_tlwhs[0], online_scores[0],
                          online_ids[0])
                statistic = flow_statistic(
                    result, self.secs_interval, self.do_entrance_counting,
                    video_fps, entrance, id_set, interval_id_set, in_id_list,
                    out_id_list, prev_center, records, data_type, num_classes)
                records = statistic['records']

535
            fps = 1. / timer.duration
536
            if self.use_deepsort_tracker:
537
                # use DeepSORTTracker, only support singe class
538 539
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
540 541 542 543 544 545
                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
546 547 548
                    fps=fps,
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance)
549 550 551 552
            else:
                # use ByteTracker, support multiple class
                for cls_id in range(num_classes):
                    results[cls_id].append(
553 554
                        (frame_id + 1, online_tlwhs[cls_id],
                         online_scores[cls_id], online_ids[cls_id]))
555 556 557 558 559 560 561 562
                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps,
563 564 565 566 567
                    ids2names=ids2names,
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance,
                    records=records,
                    center_traj=center_traj)
568

569 570 571 572 573
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')
            write_mot_results(result_filename, results)

            result_filename = os.path.join(
                self.output_dir,
                video_out_name.split('.')[-2] + '_flow_statistic.txt')
            f = open(result_filename, 'w')
            for line in records:
                f.write(line)
            print('Flow statistic save in {}'.format(result_filename))
            f.close()

589 590
        writer.release()

591 592 593 594 595 596 597
    def predict_mtmct(self, mtmct_dir, mtmct_cfg):
        cameras_bias = mtmct_cfg['cameras_bias']
        cid_bias = parse_bias(cameras_bias)
        scene_cluster = list(cid_bias.keys())
        # 1.zone releated parameters
        use_zone = mtmct_cfg.get('use_zone', False)
        zone_path = mtmct_cfg.get('zone_path', None)
598

599 600 601
        # 2.tricks parameters, can be used for other mtmct dataset
        use_ff = mtmct_cfg.get('use_ff', False)
        use_rerank = mtmct_cfg.get('use_rerank', False)
F
Feng Ni 已提交
602

603 604 605
        # 3.camera releated parameters
        use_camera = mtmct_cfg.get('use_camera', False)
        use_st_filter = mtmct_cfg.get('use_st_filter', False)
F
Feng Ni 已提交
606

607 608 609
        # 4.zone releated parameters
        use_roi = mtmct_cfg.get('use_roi', False)
        roi_dir = mtmct_cfg.get('roi_dir', False)
F
Feng Ni 已提交
610

611 612
        mot_list_breaks = []
        cid_tid_dict = dict()
F
Feng Ni 已提交
613

614 615 616
        output_dir = self.output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
F
Feng Ni 已提交
617

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        seqs = os.listdir(mtmct_dir)
        for seq in sorted(seqs):
            fpath = os.path.join(mtmct_dir, seq)
            if os.path.isfile(fpath) and _is_valid_video(fpath):
                seq = seq.split('.')[-2]
                print('ffmpeg processing of video {}'.format(fpath))
                frames_path = video2frames(
                    video_path=fpath, outpath=mtmct_dir, frame_rate=25)
                fpath = os.path.join(mtmct_dir, seq)

            if os.path.isdir(fpath) == False:
                print('{} is not a image folder.'.format(fpath))
                continue
            if os.path.exists(os.path.join(fpath, 'img1')):
                fpath = os.path.join(fpath, 'img1')
633 634
            assert os.path.isdir(fpath), '{} should be a directory'.format(
                fpath)
635 636 637 638 639
            image_list = glob.glob(os.path.join(fpath, '*.jpg'))
            image_list.sort()
            assert len(image_list) > 0, '{} has no images.'.format(fpath)
            print('start tracking seq: {}'.format(seq))

640 641
            mot_features_dict = self.predict_image(
                image_list, visual=False, seq_name=seq)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

            cid = int(re.sub('[a-z,A-Z]', "", seq))
            tid_data, mot_list_break = trajectory_fusion(
                mot_features_dict,
                cid,
                cid_bias,
                use_zone=use_zone,
                zone_path=zone_path)
            mot_list_breaks.append(mot_list_break)
            # single seq process
            for line in tid_data:
                tracklet = tid_data[line]
                tid = tracklet['tid']
                if (cid, tid) not in cid_tid_dict:
                    cid_tid_dict[(cid, tid)] = tracklet

        map_tid = sub_cluster(
            cid_tid_dict,
F
Feng Ni 已提交
660
            scene_cluster,
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_camera=use_camera,
            use_st_filter=use_st_filter)

        pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
        if use_camera:
            gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
        else:
            gen_res(
                pred_mtmct_file,
                scene_cluster,
                map_tid,
                mot_list_breaks,
                use_roi=use_roi,
                roi_dir=roi_dir)
F
Feng Ni 已提交
677

678
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
679 680 681 682 683 684 685 686
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
687
            camera_results,
F
Feng Ni 已提交
688 689 690 691
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
692

693
def main():
694 695 696 697 698 699
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector = SDE_Detector(
        FLAGS.model_dir,
700
        tracker_config=FLAGS.tracker_config,
701 702
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
703
        batch_size=1,
704 705 706 707 708
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
709 710
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
711 712 713 714 715 716
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts,
        draw_center_traj=FLAGS.draw_center_traj,
        secs_interval=FLAGS.secs_interval,
        do_entrance_counting=FLAGS.do_entrance_counting,
717
        reid_model_dir=FLAGS.reid_model_dir,
718
        mtmct_dir=FLAGS.mtmct_dir, )
719 720 721

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
722
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
F
Feng Ni 已提交
723
    elif FLAGS.mtmct_dir is not None:
724
        with open(FLAGS.mtmct_cfg) as f:
F
Feng Ni 已提交
725
            mtmct_cfg = yaml.safe_load(f)
726
        detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
727 728
    else:
        # predict from image
729 730
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
731
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
732
        seq_name = FLAGS.image_dir.split('/')[-1]
733 734
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
735 736 737 738 739

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
740 741 742
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
743 744
                'precision': mode.split('_')[-1]
            }
745
            bench_log(detector, img_list, model_info, name='MOT')
746 747 748 749 750 751 752 753 754 755 756 757


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()