keypoint_infer.py 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import glob
from functools import reduce

from PIL import Image
import cv2
W
wangguanzhong 已提交
23
import math
24 25
import numpy as np
import paddle
W
wangguanzhong 已提交
26 27 28 29 30 31

import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

32
from preprocess import preprocess, NormalizeImage, Permute
W
wangguanzhong 已提交
33
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
34
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
W
wangguanzhong 已提交
35
from visualize import visualize_pose
36 37
from paddle.inference import Config
from paddle.inference import create_predictor
38 39
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
40
from infer import Detector, get_test_images, print_arguments
41 42 43 44 45 46 47 48

# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}


W
wangguanzhong 已提交
49
class KeyPointDetector(Detector):
50 51 52
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
53
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
54
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
W
wangguanzhong 已提交
55
        batch_size (int): size of pre batch in inference
56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
59 60 61 62 63
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        use_dark(bool): whether to use postprocess in DarkPose
64 65 66 67
    """

    def __init__(self,
                 model_dir,
G
Guanghua Yu 已提交
68
                 device='CPU',
69
                 run_mode='paddle',
70
                 batch_size=1,
71 72 73 74 75
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
Z
zhiboniu 已提交
76
                 enable_mkldnn=False,
W
wangguanzhong 已提交
77 78
                 output_dir='output',
                 threshold=0.5,
Z
zhiboniu 已提交
79
                 use_dark=True):
W
wangguanzhong 已提交
80
        super(KeyPointDetector, self).__init__(
81
            model_dir=model_dir,
G
Guanghua Yu 已提交
82
            device=device,
83 84
            run_mode=run_mode,
            batch_size=batch_size,
85 86 87 88 89
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
90 91 92
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
Z
zhiboniu 已提交
93
        self.use_dark = use_dark
94

W
wangguanzhong 已提交
95 96 97
    def set_config(self, model_dir):
        return PredictConfig_KeyPoint(model_dir)

98
    def get_person_from_rect(self, image, results):
W
wangguanzhong 已提交
99 100
        # crop the person result from image
        self.det_times.preprocess_time_s.start()
101
        valid_rects = results['boxes']
W
wangguanzhong 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
        rect_images = []
        new_rects = []
        org_rects = []
        for rect in valid_rects:
            rect_image, new_rect, org_rect = expand_crop(image, rect)
            if rect_image is None or rect_image.size == 0:
                continue
            rect_images.append(rect_image)
            new_rects.append(new_rect)
            org_rects.append(org_rect)
        self.det_times.preprocess_time_s.end()
        return rect_images, new_rects, org_rects

W
wangguanzhong 已提交
115 116 117
    def postprocess(self, inputs, result):
        np_heatmap = result['heatmap']
        np_masks = result['masks']
118 119 120 121 122
        # postprocess output of predictor
        if KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_bottomup':
            results = {}
            h, w = inputs['im_shape'][0]
W
wangguanzhong 已提交
123
            preds = [np_heatmap]
124 125 126 127
            if np_masks is not None:
                preds += np_masks
            preds += [h, w]
            keypoint_postprocess = HrHRNetPostProcess()
W
wangguanzhong 已提交
128 129 130
            kpts, scores = keypoint_postprocess(*preds)
            results['keypoint'] = kpts
            results['score'] = scores
131 132 133 134 135 136 137
            return results
        elif KEYPOINT_SUPPORT_MODELS[
                self.pred_config.arch] == 'keypoint_topdown':
            results = {}
            imshape = inputs['im_shape'][:, ::-1]
            center = np.round(imshape / 2.)
            scale = imshape / 200.
Z
zhiboniu 已提交
138
            keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
W
wangguanzhong 已提交
139 140 141
            kpts, scores = keypoint_postprocess(np_heatmap, center, scale)
            results['keypoint'] = kpts
            results['score'] = scores
142 143 144 145 146
            return results
        else:
            raise ValueError("Unsupported arch: {}, expect {}".format(
                self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))

W
wangguanzhong 已提交
147
    def predict(self, repeats=1):
148 149
        '''
        Args:
W
wangguanzhong 已提交
150
            repeats (int): repeat number for prediction
151 152 153 154 155 156
        Returns:
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
W
wangguanzhong 已提交
157
        # model prediction
W
wangguanzhong 已提交
158
        np_heatmap, np_masks = None, None
159 160 161
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
162 163
            heatmap_tensor = self.predictor.get_output_handle(output_names[0])
            np_heatmap = heatmap_tensor.copy_to_cpu()
164 165 166 167 168 169 170 171
            if self.pred_config.tagmap:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                heat_k = self.predictor.get_output_handle(output_names[2])
                inds_k = self.predictor.get_output_handle(output_names[3])
                np_masks = [
                    masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
                    inds_k.copy_to_cpu()
                ]
W
wangguanzhong 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        result = dict(heatmap=np_heatmap, masks=np_masks)
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        results = []
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu

            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    if not os.path.exists(self.output_dir):
                        os.makedirs(self.output_dir)
                    visualize(
                        batch_image_list,
                        result,
                        visual_thresh=self.threshold,
                        save_dir=self.output_dir)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))
        results = self.merge_batch_result(results)
241 242
        return results

W
wangguanzhong 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    def predict_video(self, video_file, camera_id):
        video_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame], visual=False)
            im = visualize_pose(
                frame, results, visual_thresh=self.threshold, returnimg=True)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()

279

W
wangguanzhong 已提交
280
def create_inputs(imgs, im_info):
281 282
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
283 284
        imgs (list(numpy)): list of image (np.ndarray)
        im_info (list(dict)): list of image info
285 286 287 288
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
289
    inputs['image'] = np.stack(imgs, axis=0).astype('float32')
W
wangguanzhong 已提交
290 291 292 293
    im_shape = []
    for e in im_info:
        im_shape.append(np.array((e['im_shape'])).astype('float32'))
    inputs['im_shape'] = np.stack(im_shape, axis=0)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    return inputs


class PredictConfig_KeyPoint():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.tagmap = False
315
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        if 'keypoint_bottomup' == self.archcls:
            self.tagmap = True
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in KEYPOINT_SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], KEYPOINT_SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


W
wangguanzhong 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
def visualize(image_list, results, visual_thresh=0.6, save_dir='output'):
    im_results = {}
    for i, image_file in enumerate(image_list):
        skeletons = results['keypoint']
        scores = results['score']
        skeleton = skeletons[i:i + 1]
        score = scores[i:i + 1]
        im_results['keypoint'] = [skeleton, score]
        visualize_pose(
            image_file,
            im_results,
            visual_thresh=visual_thresh,
            save_dir=save_dir)
353 354 355


def main():
W
wangguanzhong 已提交
356
    detector = KeyPointDetector(
357
        FLAGS.model_dir,
G
Guanghua Yu 已提交
358
        device=FLAGS.device,
359
        run_mode=FLAGS.run_mode,
W
wangguanzhong 已提交
360
        batch_size=FLAGS.batch_size,
361 362 363 364 365
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
Z
zhiboniu 已提交
366
        enable_mkldnn=FLAGS.enable_mkldnn,
W
wangguanzhong 已提交
367 368
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir,
Z
zhiboniu 已提交
369
        use_dark=FLAGS.use_dark)
370 371 372

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
373
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
374 375 376
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
377
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
378 379 380 381
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
382 383
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
384 385
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('KeyPoint')
401 402 403 404 405 406 407


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
408 409 410 411
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
412 413

    main()