distribute_transpiler.py 27.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


87 88 89 90
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
91 92 93 94 95
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
96
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
97 98
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
99

T
typhoonzero 已提交
100 101
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
102 103
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
122
        # update split_count after aligning
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
132 133 134 135 136 137 138 139 140
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
141 142
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
143
            to do parameter optimization. And the optimization graph will be put
144
            into a parameter server program.
T
done  
typhoonzero 已提交
145

146
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
147 148 149 150 151
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
152
            :param program: program to optimize, default is default_main_program
T
done  
typhoonzero 已提交
153 154 155 156
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
157
        assert (callable(split_method))
T
done  
typhoonzero 已提交
158 159
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
160
        self.program = program
T
done  
typhoonzero 已提交
161
        self.trainers = trainers
T
typhoonzero 已提交
162
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
163
        # steps to transpile:
164
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
165 166 167
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
168
        # 5. create new program for parameter server.
T
typhoonzero 已提交
169
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
170

T
typhoonzero 已提交
171
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
172 173

        # step1
T
typhoonzero 已提交
174 175
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
176
        # TODO: add split selected rows support
T
typhoonzero 已提交
177 178
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
179
        # step2
T
typhoonzero 已提交
180
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
181 182 183

        # step3
        send_inputs = []
T
typhoonzero 已提交
184
        send_outputs = []
T
typhoonzero 已提交
185 186 187 188
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
189 190
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
191 192 193
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
194

195 196
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
197
        eplist = split_method(send_inputs, pserver_endpoints)
198
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
199 200 201 202 203 204 205 206
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
207

T
typhoonzero 已提交
208 209 210 211 212 213
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

214
        # create send_op
T
typhoonzero 已提交
215 216 217
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
218 219
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
220
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
221 222 223
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
224 225
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
226 227 228
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
229
                inputs={"X": splited_var},
T
typhoonzero 已提交
230
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
231
                attrs={"axis": 0})
T
typhoonzero 已提交
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        self.lr_param_mapping = self._create_lr_param_mapping()

    def _create_lr_param_mapping(self):
        lr_mapping = dict()
        for _, opt_op in enumerate(self.optimize_ops):
            if not opt_op.inputs or not opt_op.inputs.has_key("LearningRate") \
              or not opt_op.inputs.has_key("Param"):
                continue
            lr = opt_op.inputs["LearningRate"].name
            param = opt_op.inputs["Param"].name
            if not lr_mapping.has_key(lr):
                lr_mapping.update({lr: list()})
            lr_mapping[lr].append(param)
        return lr_mapping

T
typhoonzero 已提交
248
    def _create_vars_from_blocklist(self, program, block_list):
249
        # Create respective variables using the block_list
T
typhoonzero 已提交
250
        block_map = dict()
T
typhoonzero 已提交
251
        var_mapping = dict()
T
typhoonzero 已提交
252 253 254 255 256 257 258
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
259 260 261 262
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
263 264 265 266
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
267

T
typhoonzero 已提交
268
            for i, block in enumerate(splited):
T
typhoonzero 已提交
269
                size = block[1]
T
typhoonzero 已提交
270 271 272 273
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
274 275 276 277
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
278
                    type=orig_var.type,
T
typhoonzero 已提交
279
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
280
                var_mapping[varname].append(var)
T
typhoonzero 已提交
281
        return var_mapping
T
done  
typhoonzero 已提交
282 283 284 285 286 287 288 289 290

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
291
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
292 293
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
294

T
typhoonzero 已提交
295
    def _append_split_op(self, program, gradblocks):
296
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
297 298
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
299 300
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
301
                continue
T
typhoonzero 已提交
302
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
303
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
304 305 306 307 308 309 310 311
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
312
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
313 314 315 316 317 318 319 320 321 322 323 324
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
325
        return var_mapping
T
done  
typhoonzero 已提交
326

T
typhoonzero 已提交
327
    def get_trainer_program(self):
T
typhoonzero 已提交
328
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
329 330
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
331

T
done  
typhoonzero 已提交
332
    def _create_var_for_trainers(self, block, var, trainers):
333
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
334 335 336 337 338 339
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
340
                type=var.type,
T
done  
typhoonzero 已提交
341 342 343 344
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
345 346 347 348
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
349
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

372 373 374 375 376 377 378 379 380
    def _fetch_var_names(self, param_dict):
        res = []
        if not param_dict:
            return res
        for _, values in param_dict.iteritems():
            if not isinstance(values, list):
                values = [values]
            res += [v.name for v in values]
        return res
T
typhoonzero 已提交
381

382 383
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
384
        new_inputs = dict()
T
typhoonzero 已提交
385 386
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
387
        for key in opt_op.input_names:
T
typhoonzero 已提交
388 389 390
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
391
                    if same_or_split_var(g.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
392 393 394 395 396 397
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
398
                merged_var = program.global_block().vars[grad_block.name]
T
typhoonzero 已提交
399 400
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
401
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
402
                        program.global_block(), grad_block, self.trainers)
403
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
404 405 406
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
407
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
408 409 410 411
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
412 413 414 415 416
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
417
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
418 419 420 421
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
422
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
423
                    name=param_block.name,
T
typhoonzero 已提交
424
                    persistable=True,
T
typhoonzero 已提交
425 426
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
427

T
typhoonzero 已提交
428
                new_inputs[key] = tmpvar
429 430 431 432 433
            elif key == "LearningRate":
                # leraning rate variable has already be created by non-optimize op,
                # don't create it once again.
                new_inputs[key] = program.global_block().vars[opt_op.input(key)[
                    0]]
T
typhoonzero 已提交
434

T
typhoonzero 已提交
435
        for key in opt_op.input_names:
436 437
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
438
                continue
439
            var = program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
440 441 442 443 444 445 446 447 448 449
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
450

451
        # change output's ParamOut variable
452
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
453
        optimize_block.append_op(
T
typhoonzero 已提交
454 455
            type=opt_op.type,
            inputs=new_inputs,
456
            outputs=opt_op.outputs,
T
typhoonzero 已提交
457 458
            attrs=opt_op.attrs)

459 460
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
461
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
462 463
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
464 465 466 467
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
468
            for var in varlist:
469 470
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
471 472 473 474 475 476 477 478
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

479 480 481 482 483 484 485 486 487 488 489
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
                program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)

490
        optimize_block.append_op(
T
typhoonzero 已提交
491
            type=opt_op.type,
T
typhoonzero 已提交
492 493
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
494 495
            attrs=opt_op.attrs)

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
        op1_input_names = self._fetch_var_names(op1.inputs)
        op1_output_names = self._fetch_var_names(op1.outputs)

        op2_input_names = self._fetch_var_names(op2.inputs)
        op2_output_names = self._fetch_var_names(op2.outputs)
        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
        if op.inputs and op.inputs.has_key("Param") \
          and op.inputs.has_key("LearningRate"):
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        if op.inputs["Param"].name in param_names:
            return True
        else:
            for n in param_names:
                param = op.inputs["Param"].name
                if same_or_split_var(n, param) and n != op.inputs["Param"].name:
                    return True
            return False
        return False

543
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
544
        """
545
        Get pserver side program using the endpoint
T
typhoonzero 已提交
546 547 548 549 550 551 552 553 554

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
555
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
556 557 558 559 560 561 562 563 564 565 566
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
567

T
typhoonzero 已提交
568
        # step6
569
        optimize_block = pserver_program.create_block(0)
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        # step 6.1
        # Create a union-find data struct by optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 6.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 6.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
        for _, op in enumerate(self.optimize_ops):
            for _, opt_op in enumerate(opt_op_on_pserver):
                if ufind.is_connected(op, opt_op):
                    if self._is_opt_op(op):
                        self._append_pserver_ops(optimize_block, op, endpoint)
                    else:
                        self._append_pserver_non_opt_ops(optimize_block, op)
                    break
594
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
595
        pserver_program.global_block().append_op(
596
            type="listen_and_serv",
T
typhoonzero 已提交
597
            inputs={},
T
done  
typhoonzero 已提交
598 599
            outputs={},
            attrs={
600
                "OptimizeBlock": optimize_block,
T
done  
typhoonzero 已提交
601
                "endpoint": endpoint,
T
typhoonzero 已提交
602 603 604 605 606 607 608 609
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
610
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
611 612 613
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
614

T
typhoonzero 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

T
typhoonzero 已提交
639
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
640 641 642
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
643
        were split to several blocks.
T
typhoonzero 已提交
644 645 646 647 648 649 650 651
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
652
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
653 654 655
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
656 657
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
658
        created_var_map = dict()
Y
update  
yi.wu 已提交
659
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
660 661
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
662
                persistable=var.persistable,
T
typhoonzero 已提交
663 664 665 666 667 668
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
T
typhoonzero 已提交
669
            new_inputs = dict()
T
typhoonzero 已提交
670
            new_outputs = dict()
Y
update  
yi.wu 已提交
671 672
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
673 674
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
T
typhoonzero 已提交
675
                if newname:
Y
update  
yi.wu 已提交
676
                    op_on_pserver = True
T
typhoonzero 已提交
677
                    new_outputs[key] = created_var_map[newname]
T
typhoonzero 已提交
678
                elif op.output(key)[0] in pserver_vars:
T
typhoonzero 已提交
679
                    op_on_pserver = True
T
typhoonzero 已提交
680 681 682 683
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)
Y
update  
yi.wu 已提交
684

T
typhoonzero 已提交
685
            if op_on_pserver:
T
typhoonzero 已提交
686 687 688
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
689
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
690 691
                s_prog.global_block().append_op(
                    type=op.type,
T
typhoonzero 已提交
692
                    inputs=new_inputs,
T
typhoonzero 已提交
693 694 695
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog