distribute_transpiler.py 12.2 KB
Newer Older
T
typhoonzero 已提交
1
from __future__ import print_function
T
done  
typhoonzero 已提交
2 3 4 5
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
6
from distributed_spliter import *
T
typhoonzero 已提交
7
import math
T
done  
typhoonzero 已提交
8 9


T
typhoonzero 已提交
10 11 12 13 14 15
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
16

T
typhoonzero 已提交
17 18
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
19 20


T
typhoonzero 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
T
typhoonzero 已提交
59 60
        print("$$ splited var: ", var.name, var.shape, split_count, len(blocks),
              block_size)
T
typhoonzero 已提交
61 62 63
    return blocks


T
done  
typhoonzero 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
89
        assert (callable(split_method))
T
done  
typhoonzero 已提交
90 91
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
92
        self.program = program
T
done  
typhoonzero 已提交
93
        self.trainers = trainers
T
typhoonzero 已提交
94
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
95 96 97 98 99 100 101 102 103
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
        # 5. create parameter server program by split_method generated endpoint->VarBlock
        # 6. run compile time infershape for parameter server program

T
typhoonzero 已提交
104
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
105 106

        # step1
T
typhoonzero 已提交
107 108
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
109
        # TODO: add split selected rows support
T
typhoonzero 已提交
110 111
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
112
        # step2
T
typhoonzero 已提交
113
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
114 115 116

        # step3
        send_inputs = []
T
typhoonzero 已提交
117 118
        send_outputs = []
        for _, splited in grad_var_mapping.iteritems():
T
typhoonzero 已提交
119
            send_inputs.extend(splited)
T
typhoonzero 已提交
120 121 122 123 124 125 126
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        for _, splited in param_var_mapping.iteritems():
            send_outputs.extend(splited)
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
127 128 129 130 131 132

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
133 134 135 136
                   "epmap": eplist})

        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
137 138
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
139 140 141
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
142
                inputs={"X": splited_var},
T
typhoonzero 已提交
143 144
                outputs={"Out": orig_param},
                attrs={"axis": 0})
T
typhoonzero 已提交
145 146 147

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
148
        var_mapping = dict()
T
typhoonzero 已提交
149 150 151 152 153 154 155
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
156 157 158 159
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
160 161 162 163
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
164

T
typhoonzero 已提交
165
            for i, block in enumerate(splited):
T
typhoonzero 已提交
166
                size = block[1]
T
typhoonzero 已提交
167 168 169 170
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
171 172 173 174
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
175
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
176
                var_mapping[varname].append(var)
T
typhoonzero 已提交
177
        return var_mapping
T
done  
typhoonzero 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

    def _clone_param(self, block, v):
        assert isinstance(v, Parameter)
        new_p = Parameter(
            block=block,
            shape=v.shape,
            dtype=v.dtype,
            type=v.type,
            lod_level=v.lod_level,
            stop_gradient=v.stop_gradient,
            trainable=v.trainable,
            optimize_attr=v.optimize_attr,
            regularizer=v.regularizer,
            name=v.name)
        block.vars[new_p.name] = new_p

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=var.persistable)

T
typhoonzero 已提交
204 205 206
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
207 208
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
209
                continue
T
typhoonzero 已提交
210
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
211 212 213
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
T
typhoonzero 已提交
214 215 216
            program.global_block().append_op(
                type="split",
                inputs={"X": orig_var},
T
typhoonzero 已提交
217 218
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
T
typhoonzero 已提交
219
            )
T
typhoonzero 已提交
220
        return var_mapping
T
done  
typhoonzero 已提交
221

T
typhoonzero 已提交
222
    def get_trainer_program(self):
T
typhoonzero 已提交
223
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
224 225
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
226

T
done  
typhoonzero 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

    def get_pserver_program(self, endpoint, optimize_ops):
        pserver_program = Program()
        for v in self.param_grad_map[endpoint]["params"]:
            self._clone_param(pserver_program.global_block(), v)

        optimize_sub_program = Program()
        grad_var_names = [
            var.name for var in self.param_grad_map[endpoint]["grads"]
        ]
        for opt_op in optimize_ops:
            for _, var in opt_op.inputs.iteritems():
                # NOTE: append operators to merge gradients from multiple
                # trainers. If trainers == 1, this is not needed.
                if self.trainers > 1 and var.name in grad_var_names:
                    vars2merge = self._create_var_for_trainers(
                        optimize_sub_program.global_block(), var, self.trainers)
                    merged_var = optimize_sub_program.global_block().create_var(
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)
                    optimize_sub_program.global_block().append_op(
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
                    optimize_sub_program.global_block().append_op(
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
                else:
                    optimize_sub_program.global_block().create_var(
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)
T
typhoonzero 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287

            if opt_op.inputs.has_key("Grad"):
                if opt_op.inputs["Grad"].name in grad_var_names:
                    optimize_sub_program.global_block().append_op(
                        type=opt_op.type,
                        inputs=opt_op.inputs,
                        outputs=opt_op.outputs,
                        attrs=opt_op.attrs)
            else:
                optimize_sub_program.global_block().append_op(
                    type=opt_op.type,
                    inputs=opt_op.inputs,
                    outputs=opt_op.outputs,
                    attrs=opt_op.attrs)
T
done  
typhoonzero 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        pserver_program.global_block().append_op(
            type="recv",
            inputs={"RX":
                    self.param_grad_map[endpoint]["grads"]},  # grads to recv
            outputs={},
            attrs={
                "OptimizeProgram": optimize_sub_program.desc,
                "endpoint": endpoint,
                "ParamList":
                [p.name for p in self.param_grad_map[endpoint]["params"]],
                "GradList":
                [p.name for p in self.param_grad_map[endpoint]["grads"]],
                "Trainers": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program