distribute_transpiler.py 22.5 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


T
typhoonzero 已提交
36 37 38 39 40
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
41
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
42 43
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
44

T
typhoonzero 已提交
45 46
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
47 48
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
67
        # update split_count after aligning
T
typhoonzero 已提交
68 69 70 71 72 73 74 75 76
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
77 78 79 80 81 82 83 84 85
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
86 87
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
88
            to do parameter optimization. And the optimization graph will be put
89
            into a parameter server program.
T
done  
typhoonzero 已提交
90

91
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
92 93 94 95 96
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
97
            :param program: program to optimize, default is default_main_program
T
done  
typhoonzero 已提交
98 99 100 101
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
102
        assert (callable(split_method))
T
done  
typhoonzero 已提交
103 104
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
105
        self.program = program
T
done  
typhoonzero 已提交
106
        self.trainers = trainers
T
typhoonzero 已提交
107
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
108
        # steps to transpile:
109
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
110 111 112
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
113
        # 5. create new program for parameter server.
T
typhoonzero 已提交
114
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
115

T
typhoonzero 已提交
116
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
117 118

        # step1
T
typhoonzero 已提交
119 120
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
121
        # TODO: add split selected rows support
T
typhoonzero 已提交
122 123
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
124
        # step2
T
typhoonzero 已提交
125
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
126 127 128

        # step3
        send_inputs = []
T
typhoonzero 已提交
129
        send_outputs = []
T
typhoonzero 已提交
130 131 132 133
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
134 135
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
136 137 138
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
139 140
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
141
        eplist = split_method(send_inputs, pserver_endpoints)
142
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
143 144 145 146 147 148 149 150
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
151

152
        # create send_op
T
typhoonzero 已提交
153 154 155 156 157
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
158 159 160
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
161 162
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
163 164 165
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
166
                inputs={"X": splited_var},
T
typhoonzero 已提交
167
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
168
                attrs={"axis": 0})
T
typhoonzero 已提交
169 170

    def _create_vars_from_blocklist(self, program, block_list):
171
        # Create respective variables using the block_list
T
typhoonzero 已提交
172
        block_map = dict()
T
typhoonzero 已提交
173
        var_mapping = dict()
T
typhoonzero 已提交
174 175 176 177 178 179 180
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
181 182 183 184
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
185 186 187 188
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
189

T
typhoonzero 已提交
190
            for i, block in enumerate(splited):
T
typhoonzero 已提交
191
                size = block[1]
T
typhoonzero 已提交
192 193 194 195
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
196 197 198 199
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
200
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
201
                var_mapping[varname].append(var)
T
typhoonzero 已提交
202
        return var_mapping
T
done  
typhoonzero 已提交
203 204 205 206 207 208 209 210 211

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
212
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
213 214
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
215

T
typhoonzero 已提交
216
    def _append_split_op(self, program, gradblocks):
217
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
218 219
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
220 221
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
222
                continue
T
typhoonzero 已提交
223
            orig_var = program.global_block().vars[varname]
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            if orig_var == core.VarDesc.VarType.SELECTED_ROWS:
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
            elif orig_var == core.VarDesc.VarType.LOD_TENSOR:
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
246
        return var_mapping
T
done  
typhoonzero 已提交
247

T
typhoonzero 已提交
248
    def get_trainer_program(self):
T
typhoonzero 已提交
249
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
250 251
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
252

T
done  
typhoonzero 已提交
253
    def _create_var_for_trainers(self, block, var, trainers):
254
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
255 256 257 258 259 260 261 262 263 264
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
265 266 267 268
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
269
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
        if op.inputs.has_key("Param"):
            if op.inputs["Param"].name in param_names:
                return True
            else:
                for n in param_names:
                    if n.startswith(op.inputs["Param"].name+".block") and \
307
                       n != op.inputs["Param"].name:
T
typhoonzero 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
                prev_output_names = [o.name for o in prev_op.outputs.values()]
                prev_input_names = [o.name for o in prev_op.inputs.values()]
                found1 = False
                found2 = False
                for _, v in op.inputs.iteritems():
                    if v.name in prev_output_names:
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
                for _, v in op.outputs.iteritems():
                    if v.name in prev_input_names:
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

    def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
T
typhoonzero 已提交
331
        new_inputs = dict()
T
typhoonzero 已提交
332 333
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
334 335 336 337 338 339 340 341 342 343 344
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
                    if g.name.startswith(var.name):
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
345
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
346 347 348 349 350 351
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
352
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
353 354
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
355 356 357
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
358
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
359 360 361 362
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
363 364 365 366 367 368 369 370 371 372
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
                    if p.name.startswith(var.name):
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
373
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
374
                    name=param_block.name,
T
typhoonzero 已提交
375
                    persistable=True,
T
typhoonzero 已提交
376 377
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
378

T
typhoonzero 已提交
379
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
394 395 396 397 398 399 400 401
            # create var in pserver program global block.
            # TODO(typhoonzero): put blocks in one program to avoid create two
            # variables.
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
T
typhoonzero 已提交
402

403
        # change output's ParamOut variable
T
typhoonzero 已提交
404
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
405
        program.global_block().append_op(
T
typhoonzero 已提交
406 407 408 409 410
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
411
    def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
412
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
413
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
414
            program.global_block().create_var(
T
typhoonzero 已提交
415 416 417 418
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
419 420 421 422 423
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
424
        program.global_block().append_op(
T
typhoonzero 已提交
425
            type=opt_op.type,
T
typhoonzero 已提交
426
            inputs=opt_op.inputs,
T
typhoonzero 已提交
427 428 429
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

430
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
431
        """
432
        Get pserver side program using the endpoint
T
typhoonzero 已提交
433 434 435 436 437 438 439 440 441

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
442
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                print("create variable for program: %s.trainer_%d" %
                      (v.name, trainer_id))
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
456 457
        # step6
        optimize_sub_program = Program()
458
        # Iterate through the ops and append ops as needed
459 460 461
        for idx, opt_op in enumerate(self.optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
462 463
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
464
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
465 466
                self._append_pserver_ops(optimize_sub_program, pserver_program,
                                         opt_op, endpoint)
T
typhoonzero 已提交
467
            else:
T
typhoonzero 已提交
468 469
                self._append_pserver_non_opt_ops(optimize_sub_program,
                                                 pserver_program, opt_op)
470
        # Append the recv op
T
done  
typhoonzero 已提交
471 472
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
473 474
            inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
                    },  # grads to recv
T
done  
typhoonzero 已提交
475 476
            outputs={},
            attrs={
477
                "OptimizeBlock": optimize_sub_program.global_block(),
T
done  
typhoonzero 已提交
478
                "endpoint": endpoint,
T
typhoonzero 已提交
479 480 481 482 483 484 485 486
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
487
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
488 489 490
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
491

T
typhoonzero 已提交
492
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
493 494 495
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
496
        were split to several blocks.
T
typhoonzero 已提交
497 498 499 500 501 502 503 504 505 506 507 508
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if pname.startswith(varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
509 510
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
511
        created_var_map = dict()
Y
update  
yi.wu 已提交
512
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
513 514
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
515
                persistable=var.persistable,
T
typhoonzero 已提交
516 517 518 519 520 521 522
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
Y
update  
yi.wu 已提交
523 524
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
525 526 527
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
Y
update  
yi.wu 已提交
528
                    op_on_pserver = True
T
typhoonzero 已提交
529
                    new_outputs[key] = created_var_map[newname]
Y
update  
yi.wu 已提交
530
                elif var.name in pserver_vars:
T
typhoonzero 已提交
531
                    op_on_pserver = True
Y
update  
yi.wu 已提交
532 533
                    new_outputs[key] = pserver_vars[var.name]

T
typhoonzero 已提交
534
            if op_on_pserver:
T
typhoonzero 已提交
535 536 537
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
538
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
539 540 541 542 543 544
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog