gfocal_loss.py 8.7 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
Guanghua Yu 已提交
15 16 17
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/gfocal_loss.py

G
Guanghua Yu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling import ops

__all__ = ['QualityFocalLoss', 'DistributionFocalLoss']


def quality_focal_loss(pred, target, beta=2.0, use_sigmoid=True):
    """
    Quality Focal Loss (QFL) is from `Generalized Focal Loss: Learning
    Qualified and Distributed Bounding Boxes for Dense Object Detection
    <https://arxiv.org/abs/2006.04388>`_.
    Args:
        pred (Tensor): Predicted joint representation of classification
            and quality (IoU) estimation with shape (N, C), C is the number of
            classes.
        target (tuple([Tensor])): Target category label with shape (N,)
            and target quality label with shape (N,).
        beta (float): The beta parameter for calculating the modulating factor.
            Defaults to 2.0.
    Returns:
        Tensor: Loss tensor with shape (N,).
    """
    assert len(target) == 2, """target for QFL must be a tuple of two elements,
        including category label and quality label, respectively"""
    # label denotes the category id, score denotes the quality score
    label, score = target
    if use_sigmoid:
        func = F.binary_cross_entropy_with_logits
    else:
        func = F.binary_cross_entropy

    # negatives are supervised by 0 quality score
    pred_sigmoid = F.sigmoid(pred) if use_sigmoid else pred
    scale_factor = pred_sigmoid
    zerolabel = paddle.zeros(pred.shape, dtype='float32')
    loss = func(pred, zerolabel, reduction='none') * scale_factor.pow(beta)

    # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
    bg_class_ind = pred.shape[1]
    pos = paddle.logical_and((label >= 0),
                             (label < bg_class_ind)).nonzero().squeeze(1)
    if pos.shape[0] == 0:
        return loss.sum(axis=1)
    pos_label = paddle.gather(label, pos, axis=0)
    pos_mask = np.zeros(pred.shape, dtype=np.int32)
    pos_mask[pos.numpy(), pos_label.numpy()] = 1
    pos_mask = paddle.to_tensor(pos_mask, dtype='bool')
    score = score.unsqueeze(-1).expand([-1, pred.shape[1]]).cast('float32')
    # positives are supervised by bbox quality (IoU) score
    scale_factor_new = score - pred_sigmoid

    loss_pos = func(
        pred, score, reduction='none') * scale_factor_new.abs().pow(beta)
    loss = loss * paddle.logical_not(pos_mask) + loss_pos * pos_mask
    loss = loss.sum(axis=1)
    return loss


def distribution_focal_loss(pred, label):
    """Distribution Focal Loss (DFL) is from `Generalized Focal Loss: Learning
    Qualified and Distributed Bounding Boxes for Dense Object Detection
    <https://arxiv.org/abs/2006.04388>`_.
    Args:
        pred (Tensor): Predicted general distribution of bounding boxes
            (before softmax) with shape (N, n+1), n is the max value of the
            integral set `{0, ..., n}` in paper.
        label (Tensor): Target distance label for bounding boxes with
            shape (N,).
    Returns:
        Tensor: Loss tensor with shape (N,).
    """
    dis_left = label.cast('int64')
    dis_right = dis_left + 1
    weight_left = dis_right.cast('float32') - label
    weight_right = label - dis_left.cast('float32')
    loss = F.cross_entropy(pred, dis_left, reduction='none') * weight_left \
        + F.cross_entropy(pred, dis_right, reduction='none') * weight_right
    return loss


@register
@serializable
class QualityFocalLoss(nn.Layer):
    r"""Quality Focal Loss (QFL) is a variant of `Generalized Focal Loss:
    Learning Qualified and Distributed Bounding Boxes for Dense Object
    Detection <https://arxiv.org/abs/2006.04388>`_.
    Args:
        use_sigmoid (bool): Whether sigmoid operation is conducted in QFL.
            Defaults to True.
        beta (float): The beta parameter for calculating the modulating factor.
            Defaults to 2.0.
        reduction (str): Options are "none", "mean" and "sum".
        loss_weight (float): Loss weight of current loss.
    """

    def __init__(self,
                 use_sigmoid=True,
                 beta=2.0,
                 reduction='mean',
                 loss_weight=1.0):
        super(QualityFocalLoss, self).__init__()
        self.use_sigmoid = use_sigmoid
        self.beta = beta
        assert reduction in ('none', 'mean', 'sum')
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self, pred, target, weight=None, avg_factor=None):
        """Forward function.
        Args:
            pred (Tensor): Predicted joint representation of
                classification and quality (IoU) estimation with shape (N, C),
                C is the number of classes.
            target (tuple([Tensor])): Target category label with shape
                (N,) and target quality label with shape (N,).
            weight (Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
        """

        loss = self.loss_weight * quality_focal_loss(
            pred, target, beta=self.beta, use_sigmoid=self.use_sigmoid)

        if weight is not None:
            loss = loss * weight
        if avg_factor is None:
            if self.reduction == 'none':
                return loss
            elif self.reduction == 'mean':
                return loss.mean()
            elif self.reduction == 'sum':
                return loss.sum()
        else:
            # if reduction is mean, then average the loss by avg_factor
            if self.reduction == 'mean':
                loss = loss.sum() / avg_factor
            # if reduction is 'none', then do nothing, otherwise raise an error
            elif self.reduction != 'none':
                raise ValueError(
                    'avg_factor can not be used with reduction="sum"')
        return loss


@register
@serializable
class DistributionFocalLoss(nn.Layer):
    """Distribution Focal Loss (DFL) is a variant of `Generalized Focal Loss:
    Learning Qualified and Distributed Bounding Boxes for Dense Object
    Detection <https://arxiv.org/abs/2006.04388>`_.
    Args:
        reduction (str): Options are `'none'`, `'mean'` and `'sum'`.
        loss_weight (float): Loss weight of current loss.
    """

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(DistributionFocalLoss, self).__init__()
        assert reduction in ('none', 'mean', 'sum')
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self, pred, target, weight=None, avg_factor=None):
        """Forward function.
        Args:
            pred (Tensor): Predicted general distribution of bounding
                boxes (before softmax) with shape (N, n+1), n is the max value
                of the integral set `{0, ..., n}` in paper.
            target (Tensor): Target distance label for bounding boxes
                with shape (N,).
            weight (Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
        """
        loss = self.loss_weight * distribution_focal_loss(pred, target)
        if weight is not None:
            loss = loss * weight
        if avg_factor is None:
            if self.reduction == 'none':
                return loss
            elif self.reduction == 'mean':
                return loss.mean()
            elif self.reduction == 'sum':
                return loss.sum()
        else:
            # if reduction is mean, then average the loss by avg_factor
            if self.reduction == 'mean':
                loss = loss.sum() / avg_factor
            # if reduction is 'none', then do nothing, otherwise raise an error
            elif self.reduction != 'none':
                raise ValueError(
                    'avg_factor can not be used with reduction="sum"')
        return loss