Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c7c1e0e1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c7c1e0e1
编写于
11月 05, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
11月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update citation of some code (#4483)
上级
022db5ed
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
239 addition
and
350 deletion
+239
-350
deploy/cpp/src/picodet_postprocess.cc
deploy/cpp/src/picodet_postprocess.cc
+4
-1
deploy/lite/src/picodet_postprocess.cc
deploy/lite/src/picodet_postprocess.cc
+4
-1
ppdet/data/transform/atss_assigner.py
ppdet/data/transform/atss_assigner.py
+3
-0
ppdet/data/transform/batch_operators.py
ppdet/data/transform/batch_operators.py
+2
-0
ppdet/modeling/assigners/simota_assigner.py
ppdet/modeling/assigners/simota_assigner.py
+110
-113
ppdet/modeling/heads/gfl_head.py
ppdet/modeling/heads/gfl_head.py
+3
-0
ppdet/modeling/heads/simota_head.py
ppdet/modeling/heads/simota_head.py
+91
-101
ppdet/modeling/heads/solov2_head.py
ppdet/modeling/heads/solov2_head.py
+7
-1
ppdet/modeling/losses/gfocal_loss.py
ppdet/modeling/losses/gfocal_loss.py
+3
-0
ppdet/modeling/losses/varifocal_loss.py
ppdet/modeling/losses/varifocal_loss.py
+3
-0
ppdet/modeling/necks/__init__.py
ppdet/modeling/necks/__init__.py
+0
-2
ppdet/modeling/necks/csp_pan.py
ppdet/modeling/necks/csp_pan.py
+3
-4
ppdet/modeling/necks/pan.py
ppdet/modeling/necks/pan.py
+0
-127
static/ppdet/modeling/anchor_heads/solov2_head.py
static/ppdet/modeling/anchor_heads/solov2_head.py
+3
-0
static/ppdet/modeling/mask_head/solo_mask_head.py
static/ppdet/modeling/mask_head/solo_mask_head.py
+3
-0
未找到文件。
deploy/cpp/src/picodet_postprocess.cc
浏览文件 @
c7c1e0e1
...
...
@@ -11,6 +11,9 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on:
// https://github.com/RangiLyu/nanodet/blob/main/demo_mnn/nanodet_mnn.cpp
#include "include/picodet_postprocess.h"
...
...
@@ -124,4 +127,4 @@ void PicoDetPostProcess(std::vector<PaddleDetection::ObjectResult>* results,
}
}
}
// namespace PaddleDetection
\ No newline at end of file
}
// namespace PaddleDetection
deploy/lite/src/picodet_postprocess.cc
浏览文件 @
c7c1e0e1
...
...
@@ -11,6 +11,9 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// The code is based on:
// https://github.com/RangiLyu/nanodet/blob/main/demo_mnn/nanodet_mnn.cpp
#include "include/picodet_postprocess.h"
...
...
@@ -124,4 +127,4 @@ void PicoDetPostProcess(std::vector<PaddleDetection::ObjectResult>* results,
}
}
}
// namespace PaddleDetection
\ No newline at end of file
}
// namespace PaddleDetection
ppdet/data/transform/atss_assigner.py
浏览文件 @
c7c1e0e1
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/atss_assigner.py
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
ppdet/data/transform/batch_operators.py
浏览文件 @
c7c1e0e1
...
...
@@ -707,6 +707,8 @@ class Gt2TTFTarget(BaseOperator):
@
register_op
class
Gt2Solov2Target
(
BaseOperator
):
"""Assign mask target and labels in SOLOv2 network.
The code of this function is based on:
https://github.com/WXinlong/SOLO/blob/master/mmdet/models/anchor_heads/solov2_head.py#L271
Args:
num_grids (list): The list of feature map grids size.
scale_ranges (list): The list of mask boundary range.
...
...
ppdet/modeling/assigners/simota_assigner.py
浏览文件 @
c7c1e0e1
...
...
@@ -11,15 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/sim_ota_assigner.py
"""
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/sim_ota_assigner.py
import
paddle
import
numpy
as
np
import
paddle.nn.functional
as
F
import
paddle.nn
as
nn
from
ppdet.modeling.losses.varifocal_loss
import
varifocal_loss
from
ppdet.modeling.bbox_utils
import
batch_bbox_overlaps
...
...
@@ -29,7 +27,6 @@ from ppdet.core.workspace import register
@
register
class
SimOTAAssigner
(
object
):
"""Computes matching between predictions and ground truth.
Args:
center_radius (int | float, optional): Ground truth center size
to judge whether a prior is in center. Default 2.5.
...
...
@@ -58,86 +55,89 @@ class SimOTAAssigner(object):
self
.
num_classes
=
num_classes
self
.
use_vfl
=
use_vfl
def
get_in_gt_and_in_center_info
(
self
,
priors
,
gt_bboxes
):
def
get_in_gt_and_in_center_info
(
self
,
flatten_center_and_stride
,
gt_bboxes
):
num_gt
=
gt_bboxes
.
shape
[
0
]
repeated_x
=
priors
[:,
0
].
unsqueeze
(
1
).
tile
([
1
,
num_gt
])
repeated_y
=
priors
[:,
1
].
unsqueeze
(
1
).
tile
([
1
,
num_gt
])
repeated_stride_x
=
priors
[:,
2
].
unsqueeze
(
1
).
tile
([
1
,
num_gt
])
repeated_stride_y
=
priors
[:,
3
].
unsqueeze
(
1
).
tile
([
1
,
num_gt
])
# is prior centers in gt bboxes, shape: [n_prior, n_gt]
l_
=
repeated_x
-
gt_bboxes
[:,
0
]
t_
=
repeated_y
-
gt_bboxes
[:,
1
]
r_
=
gt_bboxes
[:,
2
]
-
repeated_x
b_
=
gt_bboxes
[:,
3
]
-
repeated_y
flatten_x
=
flatten_center_and_stride
[:,
0
].
unsqueeze
(
1
).
tile
(
[
1
,
num_gt
])
flatten_y
=
flatten_center_and_stride
[:,
1
].
unsqueeze
(
1
).
tile
(
[
1
,
num_gt
])
flatten_stride_x
=
flatten_center_and_stride
[:,
2
].
unsqueeze
(
1
).
tile
(
[
1
,
num_gt
])
flatten_stride_y
=
flatten_center_and_stride
[:,
3
].
unsqueeze
(
1
).
tile
(
[
1
,
num_gt
])
# is prior centers in gt bboxes, shape: [n_center, n_gt]
l_
=
flatten_x
-
gt_bboxes
[:,
0
]
t_
=
flatten_y
-
gt_bboxes
[:,
1
]
r_
=
gt_bboxes
[:,
2
]
-
flatten_x
b_
=
gt_bboxes
[:,
3
]
-
flatten_y
deltas
=
paddle
.
stack
([
l_
,
t_
,
r_
,
b_
],
axis
=
1
)
is_in_gts
=
deltas
.
min
(
axis
=
1
)
>
0
is_in_gts_all
=
is_in_gts
.
sum
(
axis
=
1
)
>
0
# is prior centers in gt centers
gt_cxs
=
(
gt_bboxes
[:,
0
]
+
gt_bboxes
[:,
2
])
/
2.0
gt_cys
=
(
gt_bboxes
[:,
1
]
+
gt_bboxes
[:,
3
])
/
2.0
ct_bo
x_l
=
gt_cxs
-
self
.
center_radius
*
repeated
_stride_x
ct_bo
x_t
=
gt_cys
-
self
.
center_radius
*
repeated
_stride_y
ct_bo
x_r
=
gt_cxs
+
self
.
center_radius
*
repeated
_stride_x
ct_bo
x_b
=
gt_cys
+
self
.
center_radius
*
repeated
_stride_y
cl_
=
repeated_x
-
ct_box
_l
ct_
=
repeated_y
-
ct_box
_t
cr_
=
ct_bo
x_r
-
repeated
_x
cb_
=
ct_bo
x_b
-
repeated
_y
gt_c
enter_
xs
=
(
gt_bboxes
[:,
0
]
+
gt_bboxes
[:,
2
])
/
2.0
gt_c
enter_
ys
=
(
gt_bboxes
[:,
1
]
+
gt_bboxes
[:,
3
])
/
2.0
ct_bo
und_l
=
gt_center_xs
-
self
.
center_radius
*
flatten
_stride_x
ct_bo
und_t
=
gt_center_ys
-
self
.
center_radius
*
flatten
_stride_y
ct_bo
und_r
=
gt_center_xs
+
self
.
center_radius
*
flatten
_stride_x
ct_bo
und_b
=
gt_center_ys
+
self
.
center_radius
*
flatten
_stride_y
cl_
=
flatten_x
-
ct_bound
_l
ct_
=
flatten_y
-
ct_bound
_t
cr_
=
ct_bo
und_r
-
flatten
_x
cb_
=
ct_bo
und_b
-
flatten
_y
ct_deltas
=
paddle
.
stack
([
cl_
,
ct_
,
cr_
,
cb_
],
axis
=
1
)
is_in_cts
=
ct_deltas
.
min
(
axis
=
1
)
>
0
is_in_cts_all
=
is_in_cts
.
sum
(
axis
=
1
)
>
0
# in boxes or in centers, shape: [num_priors]
is_in_gts_or_centers
=
paddle
.
logical_or
(
is_in_gts_all
,
is_in_cts_all
)
# in any of gts or gt centers, shape: [n_center]
is_in_gts_or_centers_all
=
paddle
.
logical_or
(
is_in_gts_all
,
is_in_cts_all
)
is_in_gts_or_centers_inds
=
paddle
.
nonzero
(
is_in_gts_or_centers
).
squeeze
(
1
)
is_in_gts_or_centers_
all_
inds
=
paddle
.
nonzero
(
is_in_gts_or_centers
_all
).
squeeze
(
1
)
# both in
boxes and
centers, shape: [num_fg, num_gt]
is_in_
boxe
s_and_centers
=
paddle
.
logical_and
(
# both in
gts and gt
centers, shape: [num_fg, num_gt]
is_in_
gt
s_and_centers
=
paddle
.
logical_and
(
paddle
.
gather
(
is_in_gts
.
cast
(
'int'
),
is_in_gts_or_centers_inds
,
is_in_gts
.
cast
(
'int'
),
is_in_gts_or_centers_
all_
inds
,
axis
=
0
).
cast
(
'bool'
),
paddle
.
gather
(
is_in_cts
.
cast
(
'int'
),
is_in_gts_or_centers_inds
,
is_in_cts
.
cast
(
'int'
),
is_in_gts_or_centers_
all_
inds
,
axis
=
0
).
cast
(
'bool'
))
return
is_in_gts_or_centers
,
is_in_boxe
s_and_centers
return
is_in_gts_or_centers
_all
,
is_in_gts_or_centers_all_inds
,
is_in_gt
s_and_centers
def
dynamic_k_matching
(
self
,
cost
,
pairwise_ious
,
num_gt
,
valid_mask
):
match
ing_matrix
=
np
.
zeros_like
(
cost
.
numpy
())
def
dynamic_k_matching
(
self
,
cost
_matrix
,
pairwise_ious
,
num_gt
):
match
_matrix
=
np
.
zeros_like
(
cost_matrix
.
numpy
())
# select candidate topk ious for dynamic-k calculation
topk_ious
,
_
=
paddle
.
topk
(
pairwise_ious
,
self
.
candidate_topk
,
axis
=
0
)
# calculate dynamic k for each gt
dynamic_ks
=
paddle
.
clip
(
topk_ious
.
sum
(
0
).
cast
(
'int'
),
min
=
1
)
for
gt_idx
in
range
(
num_gt
):
_
,
pos_idx
=
paddle
.
topk
(
cost
[:,
gt_idx
],
k
=
dynamic_ks
[
gt_idx
],
largest
=
False
)
match
ing
_matrix
[:,
gt_idx
][
pos_idx
.
numpy
()]
=
1.0
cost
_matrix
[:,
gt_idx
],
k
=
dynamic_ks
[
gt_idx
],
largest
=
False
)
match_matrix
[:,
gt_idx
][
pos_idx
.
numpy
()]
=
1.0
del
topk_ious
,
dynamic_ks
,
pos_idx
prior_match_gt_mask
=
matching_matrix
.
sum
(
1
)
>
1
if
prior_match_gt_mask
.
sum
()
>
0
:
cost
=
cost
.
numpy
()
cost_argmin
=
np
.
argmin
(
cost
[
prior_match_gt_mask
,
:],
axis
=
1
)
matching_matrix
[
prior_match_gt_mask
,
:]
*=
0.0
matching_matrix
[
prior_match_gt_mask
,
cost_argmin
]
=
1.0
# get foreground mask inside box and center prior
fg_mask_inboxes
=
matching_matrix
.
sum
(
1
)
>
0.0
valid_mask
[
valid_mask
.
copy
()]
=
fg_mask_inboxes
# match points more than two gts
extra_match_gts_mask
=
match_matrix
.
sum
(
1
)
>
1
if
extra_match_gts_mask
.
sum
()
>
0
:
cost_matrix
=
cost_matrix
.
numpy
()
cost_argmin
=
np
.
argmin
(
cost_matrix
[
extra_match_gts_mask
,
:],
axis
=
1
)
match_matrix
[
extra_match_gts_mask
,
:]
*=
0.0
match_matrix
[
extra_match_gts_mask
,
cost_argmin
]
=
1.0
# get foreground mask
match_fg_mask_inmatrix
=
match_matrix
.
sum
(
1
)
>
0
match_gt_inds_to_fg
=
match_matrix
[
match_fg_mask_inmatrix
,
:].
argmax
(
1
)
matched_gt_inds
=
matching_matrix
[
fg_mask_inboxes
,
:].
argmax
(
1
)
matched_gt_inds
=
paddle
.
to_tensor
(
matched_gt_inds
,
place
=
pairwise_ious
.
place
)
return
matched_gt_inds
,
valid_mask
return
match_gt_inds_to_fg
,
match_fg_mask_inmatrix
def
get_sample
(
self
,
assign_gt_inds
,
gt_bboxes
):
pos_inds
=
np
.
unique
(
np
.
nonzero
(
assign_gt_inds
>
0
)[
0
])
...
...
@@ -155,9 +155,9 @@ class SimOTAAssigner(object):
return
pos_inds
,
neg_inds
,
pos_gt_bboxes
,
pos_assigned_gt_inds
def
__call__
(
self
,
pred_scores
,
priors
,
decoded
_bboxes
,
flatten_cls_
pred_scores
,
flatten_center_and_stride
,
flatten
_bboxes
,
gt_bboxes
,
gt_labels
,
eps
=
1e-7
):
...
...
@@ -166,35 +166,31 @@ class SimOTAAssigner(object):
Returns:
assign_result: The assigned result.
"""
INF
=
100000000
num_gt
=
gt_bboxes
.
shape
[
0
]
num_bboxes
=
decoded
_bboxes
.
shape
[
0
]
num_bboxes
=
flatten
_bboxes
.
shape
[
0
]
# assign 0 by default
assigned_gt_inds
=
paddle
.
full
(
(
num_bboxes
,
),
0
,
dtype
=
paddle
.
int64
).
numpy
()
if
num_gt
==
0
or
num_bboxes
==
0
:
# No ground truth or boxes, return empty assignment
priors
=
priors
.
numpy
()
labels
=
np
.
ones
([
num_bboxes
],
dtype
=
np
.
int64
)
*
self
.
num_classes
label_weights
=
np
.
ones
([
num_bboxes
],
dtype
=
np
.
float32
)
bbox_targets
=
np
.
zeros_like
(
priors
)
return
priors
,
labels
,
label_weights
,
bbox_targets
,
0
valid_mask
,
is_in_boxes_and_center
=
self
.
get_in_gt_and_in_center_info
(
priors
,
gt_bboxes
)
valid_mask_inds
=
paddle
.
nonzero
(
valid_mask
).
squeeze
(
1
)
valid_decoded_bbox
=
decoded_bboxes
[
valid_mask_inds
]
valid_pred_scores
=
pred_scores
[
valid_mask_inds
]
num_valid
=
valid_decoded_bbox
.
shape
[
0
]
pairwise_ious
=
batch_bbox_overlaps
(
valid_decoded_bbox
,
gt_bboxes
)
# No ground truth or boxes
label
=
np
.
ones
([
num_bboxes
],
dtype
=
np
.
int64
)
*
self
.
num_classes
label_weight
=
np
.
ones
([
num_bboxes
],
dtype
=
np
.
float32
)
bbox_target
=
np
.
zeros_like
(
flatten_center_and_stride
)
return
0
,
label
,
label_weight
,
bbox_target
is_in_gts_or_centers_all
,
is_in_gts_or_centers_all_inds
,
is_in_boxes_and_center
=
self
.
get_in_gt_and_in_center_info
(
flatten_center_and_stride
,
gt_bboxes
)
# bboxes and scores to calculate matrix
valid_flatten_bboxes
=
flatten_bboxes
[
is_in_gts_or_centers_all_inds
]
valid_cls_pred_scores
=
flatten_cls_pred_scores
[
is_in_gts_or_centers_all_inds
]
num_valid_bboxes
=
valid_flatten_bboxes
.
shape
[
0
]
pairwise_ious
=
batch_bbox_overlaps
(
valid_flatten_bboxes
,
gt_bboxes
)
# [num_points,num_gts]
if
self
.
use_vfl
:
gt_vfl_labels
=
gt_labels
.
squeeze
(
-
1
).
unsqueeze
(
0
).
tile
(
[
num_valid
,
1
]).
reshape
([
-
1
])
valid_pred_scores
=
valid_pred_scores
.
unsqueeze
(
1
).
tile
(
[
num_valid
_bboxes
,
1
]).
reshape
([
-
1
])
valid_pred_scores
=
valid_
cls_
pred_scores
.
unsqueeze
(
1
).
tile
(
[
1
,
num_gt
,
1
]).
reshape
([
-
1
,
self
.
num_classes
])
vfl_score
=
np
.
zeros
(
valid_pred_scores
.
shape
)
vfl_score
[
np
.
arange
(
0
,
vfl_score
.
shape
[
0
]),
gt_vfl_labels
.
numpy
(
...
...
@@ -202,64 +198,65 @@ class SimOTAAssigner(object):
vfl_score
=
paddle
.
to_tensor
(
vfl_score
)
losses_vfl
=
varifocal_loss
(
valid_pred_scores
,
vfl_score
,
use_sigmoid
=
False
).
reshape
([
num_valid
,
num_gt
])
use_sigmoid
=
False
).
reshape
([
num_valid
_bboxes
,
num_gt
])
losses_giou
=
batch_bbox_overlaps
(
valid_
decoded_bbox
,
gt_bboxes
,
mode
=
'giou'
)
valid_
flatten_bboxes
,
gt_bboxes
,
mode
=
'giou'
)
cost_matrix
=
(
losses_vfl
*
self
.
cls_weight
+
losses_giou
*
self
.
iou_weight
+
paddle
.
logical_not
(
is_in_boxes_and_center
).
cast
(
'float32'
)
*
INF
)
paddle
.
logical_not
(
is_in_boxes_and_center
).
cast
(
'float32'
)
*
100000000
)
else
:
iou_cost
=
-
paddle
.
log
(
pairwise_ious
+
eps
)
gt_onehot_label
=
(
F
.
one_hot
(
gt_labels
.
squeeze
(
-
1
).
cast
(
paddle
.
int64
),
pred_scores
.
shape
[
-
1
]).
cast
(
'float32'
).
unsqueeze
(
0
).
tile
(
[
num_valid
,
1
,
1
]))
flatten_cls_pred_scores
.
shape
[
-
1
]).
cast
(
'float32'
).
unsqueeze
(
0
)
.
tile
([
num_valid_bboxes
,
1
,
1
]))
valid_pred_scores
=
valid_pred_scores
.
unsqueeze
(
1
).
tile
(
valid_pred_scores
=
valid_
cls_
pred_scores
.
unsqueeze
(
1
).
tile
(
[
1
,
num_gt
,
1
])
cls_cost
=
F
.
binary_cross_entropy
(
valid_pred_scores
,
gt_onehot_label
,
reduction
=
'none'
).
sum
(
-
1
)
cost_matrix
=
(
cls_cost
*
self
.
cls_weight
+
iou_cost
*
self
.
iou_weight
+
paddle
.
logical_not
(
is_in_boxes_and_center
).
cast
(
'float32'
)
*
INF
)
paddle
.
logical_not
(
is_in_boxes_and_center
).
cast
(
'float32'
)
*
100000000
)
match
ed_gt_inds
,
valid_mask
=
\
match
_gt_inds_to_fg
,
match_fg_mask_inmatrix
=
\
self
.
dynamic_k_matching
(
cost_matrix
,
pairwise_ious
,
num_gt
,
valid_mask
.
numpy
()
)
cost_matrix
,
pairwise_ious
,
num_gt
)
# assign results
gt_labels
=
gt_labels
.
numpy
(
)
priors
=
priors
.
numpy
(
)
match
ed_gt_inds
=
matched_gt_inds
.
numpy
()
gt_bboxes
=
gt_bboxes
.
numpy
()
#
sample and
assign results
assigned_gt_inds
=
np
.
zeros
([
num_bboxes
],
dtype
=
np
.
int64
)
match_fg_mask_inall
=
np
.
zeros_like
(
assigned_gt_inds
)
match
_fg_mask_inall
[
is_in_gts_or_centers_all
.
numpy
(
)]
=
match_fg_mask_inmatrix
assigned_gt_inds
[
valid_mask
]
=
matched_gt_inds
+
1
assigned_gt_inds
[
match_fg_mask_inall
.
astype
(
np
.
bool
)]
=
match_gt_inds_to_fg
+
1
pos_inds
,
neg_inds
,
pos_gt_bboxes
,
pos_assigned_gt_inds
\
=
self
.
get_sample
(
assigned_gt_inds
,
gt_bboxes
)
=
self
.
get_sample
(
assigned_gt_inds
,
gt_bboxes
.
numpy
()
)
num_cells
=
priors
.
shape
[
0
]
bbox_targets
=
np
.
zeros_like
(
priors
)
bbox_weights
=
np
.
zeros_like
(
priors
)
labels
=
np
.
ones
([
num_cells
],
dtype
=
np
.
int64
)
*
self
.
num_classes
label_weights
=
np
.
zeros
([
num_cells
],
dtype
=
np
.
float32
)
bbox_target
=
np
.
zeros_like
(
flatten_bboxes
)
bbox_weight
=
np
.
zeros_like
(
flatten_bboxes
)
label
=
np
.
ones
([
num_bboxes
],
dtype
=
np
.
int64
)
*
self
.
num_classes
label_weight
=
np
.
zeros
([
num_bboxes
],
dtype
=
np
.
float32
)
if
len
(
pos_inds
)
>
0
:
gt_labels
=
gt_labels
.
numpy
()
pos_bbox_targets
=
pos_gt_bboxes
bbox_target
s
[
pos_inds
,
:]
=
pos_bbox_targets
bbox_weight
s
[
pos_inds
,
:]
=
1.0
bbox_target
[
pos_inds
,
:]
=
pos_bbox_targets
bbox_weight
[
pos_inds
,
:]
=
1.0
if
not
np
.
any
(
gt_labels
):
label
s
[
pos_inds
]
=
0
label
[
pos_inds
]
=
0
else
:
label
s
[
pos_inds
]
=
gt_labels
.
squeeze
(
-
1
)[
pos_assigned_gt_inds
]
label
[
pos_inds
]
=
gt_labels
.
squeeze
(
-
1
)[
pos_assigned_gt_inds
]
label_weight
s
[
pos_inds
]
=
1.0
label_weight
[
pos_inds
]
=
1.0
if
len
(
neg_inds
)
>
0
:
label_weight
s
[
neg_inds
]
=
1.0
label_weight
[
neg_inds
]
=
1.0
pos_num
=
max
(
pos_inds
.
size
,
1
)
return
p
riors
,
labels
,
label_weights
,
bbox_targets
,
pos_num
return
p
os_num
,
label
,
label_weight
,
bbox_target
ppdet/modeling/heads/gfl_head.py
浏览文件 @
c7c1e0e1
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/gfl_head.py
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
ppdet/modeling/heads/simota_head.py
浏览文件 @
c7c1e0e1
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/yolox_head.py
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
@@ -30,29 +33,7 @@ from ppdet.core.workspace import register
from
ppdet.modeling.bbox_utils
import
distance2bbox
,
bbox2distance
from
ppdet.data.transform.atss_assigner
import
bbox_overlaps
from
.gfl_head
import
GFLHead
,
ScaleReg
,
Integral
def
multi_apply
(
func
,
*
args
,
**
kwargs
):
"""Apply function to a list of arguments.
Note:
This function applies the ``func`` to multiple inputs and
map the multiple outputs of the ``func`` into different
list. Each list contains the same type of outputs corresponding
to different inputs.
Args:
func (Function): A function that will be applied to a list of
arguments
Returns:
tuple(list): A tuple containing multiple list, each list contains
\
a kind of returned results by the function
"""
pfunc
=
partial
(
func
,
**
kwargs
)
if
kwargs
else
func
map_results
=
map
(
pfunc
,
*
args
)
return
tuple
(
map
(
list
,
zip
(
*
map_results
)))
from
.gfl_head
import
GFLHead
@
register
...
...
@@ -123,14 +104,15 @@ class OTAHead(GFLHead):
self
.
assigner
=
assigner
def
_get_target_single
(
self
,
cls_preds
,
centors
,
decoded_bboxes
,
gt_bboxes
,
gt_labels
):
def
_get_target_single
(
self
,
flatten_cls_pred
,
flatten_center_and_stride
,
flatten_bbox
,
gt_bboxes
,
gt_labels
):
"""Compute targets for priors in a single image.
"""
centors
,
labels
,
label_weights
,
bbox_targets
,
pos_num
=
self
.
assigner
(
F
.
sigmoid
(
cls_preds
),
centors
,
decoded_bboxes
,
gt_bboxes
,
gt_labels
)
pos_num
,
label
,
label_weight
,
bbox_target
=
self
.
assigner
(
F
.
sigmoid
(
flatten_cls_pred
),
flatten_center_and_stride
,
flatten_bbox
,
gt_bboxes
,
gt_labels
)
return
(
centors
,
labels
,
label_weights
,
bbox_targets
,
pos_num
)
return
(
pos_num
,
label
,
label_weight
,
bbox_target
)
def
get_loss
(
self
,
head_outs
,
gt_meta
):
cls_scores
,
bbox_preds
=
head_outs
...
...
@@ -142,26 +124,25 @@ class OTAHead(GFLHead):
for
featmap
in
cls_scores
]
decode_bbox_preds
=
[]
mlvl_centors
=
[]
with_stride
=
True
center_and_strides
=
[]
for
featmap_size
,
stride
,
bbox_pred
in
zip
(
featmap_sizes
,
self
.
fpn_stride
,
bbox_preds
):
# center in origin image
yy
,
xx
=
self
.
get_single_level_center_point
(
featmap_size
,
stride
,
self
.
cell_offset
)
if
with_stride
:
stride_w
=
paddle
.
full
((
len
(
xx
),
),
stride
)
stride_h
=
paddle
.
full
((
len
(
yy
),
),
stride
)
centers
=
paddle
.
stack
([
xx
,
yy
,
stride_w
,
stride_h
],
-
1
).
tile
(
center_and_stride
=
paddle
.
stack
([
xx
,
yy
,
stride
,
stride
],
-
1
).
tile
(
[
num_imgs
,
1
,
1
])
mlvl_centors
.
append
(
centers
)
centers_in_feature
=
centers
.
reshape
([
-
1
,
4
])[:,
:
-
2
]
/
stride
center_and_strides
.
append
(
center_and_stride
)
center_in_feature
=
center_and_stride
.
reshape
(
[
-
1
,
4
])[:,
:
-
2
]
/
stride
bbox_pred
=
bbox_pred
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
[
num_imgs
,
-
1
,
4
*
(
self
.
reg_max
+
1
)])
pred_
corner
s
=
self
.
distribution_project
(
bbox_pred
)
decode_bbox_pred
=
distance2bbox
(
center
s_in_feature
,
pred_corner
s
).
reshape
([
num_imgs
,
-
1
,
4
])
decode_bbox_preds
.
append
(
decode_bbox_pred
*
stride
)
pred_
distance
s
=
self
.
distribution_project
(
bbox_pred
)
decode_bbox_pred
_wo_stride
=
distance2bbox
(
center
_in_feature
,
pred_distance
s
).
reshape
([
num_imgs
,
-
1
,
4
])
decode_bbox_preds
.
append
(
decode_bbox_pred
_wo_stride
*
stride
)
flatten_cls_preds
=
[
cls_pred
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
...
...
@@ -170,27 +151,33 @@ class OTAHead(GFLHead):
]
flatten_cls_preds
=
paddle
.
concat
(
flatten_cls_preds
,
axis
=
1
)
flatten_bboxes
=
paddle
.
concat
(
decode_bbox_preds
,
axis
=
1
)
flatten_centors
=
paddle
.
concat
(
mlvl_centors
,
axis
=
1
)
gt_box
,
gt_labels
=
gt_meta
[
'gt_bbox'
],
gt_meta
[
'gt_class'
]
(
centors
,
labels
,
label_weights
,
bbox_targets
,
pos_num
)
=
multi_apply
(
self
.
_get_target_single
,
flatten_cls_preds
.
detach
(),
flatten_centors
.
detach
(),
flatten_bboxes
.
detach
(),
gt_box
,
gt_labels
)
centors
=
paddle
.
to_tensor
(
np
.
stack
(
centors
,
axis
=
0
))
labels
=
paddle
.
to_tensor
(
np
.
stack
(
labels
,
axis
=
0
))
label_weights
=
paddle
.
to_tensor
(
np
.
stack
(
label_weights
,
axis
=
0
))
bbox_targets
=
paddle
.
to_tensor
(
np
.
stack
(
bbox_targets
,
axis
=
0
))
centors_list
=
self
.
_images_to_levels
(
centors
,
num_level_anchors
)
flatten_center_and_strides
=
paddle
.
concat
(
center_and_strides
,
axis
=
1
)
gt_boxes
,
gt_labels
=
gt_meta
[
'gt_bbox'
],
gt_meta
[
'gt_class'
]
pos_num_l
,
label_l
,
label_weight_l
,
bbox_target_l
=
[],
[],
[],
[]
for
flatten_cls_pred
,
flatten_center_and_stride
,
flatten_bbox
,
gt_box
,
gt_label
\
in
zip
(
flatten_cls_preds
.
detach
(),
flatten_center_and_strides
.
detach
(),
\
flatten_bboxes
.
detach
(),
gt_boxes
,
gt_labels
):
pos_num
,
label
,
label_weight
,
bbox_target
=
self
.
_get_target_single
(
flatten_cls_pred
,
flatten_center_and_stride
,
flatten_bbox
,
gt_box
,
gt_label
)
pos_num_l
.
append
(
pos_num
)
label_l
.
append
(
label
)
label_weight_l
.
append
(
label_weight
)
bbox_target_l
.
append
(
bbox_target
)
labels
=
paddle
.
to_tensor
(
np
.
stack
(
label_l
,
axis
=
0
))
label_weights
=
paddle
.
to_tensor
(
np
.
stack
(
label_weight_l
,
axis
=
0
))
bbox_targets
=
paddle
.
to_tensor
(
np
.
stack
(
bbox_target_l
,
axis
=
0
))
center_and_strides_list
=
self
.
_images_to_levels
(
flatten_center_and_strides
,
num_level_anchors
)
labels_list
=
self
.
_images_to_levels
(
labels
,
num_level_anchors
)
label_weights_list
=
self
.
_images_to_levels
(
label_weights
,
num_level_anchors
)
bbox_targets_list
=
self
.
_images_to_levels
(
bbox_targets
,
num_level_anchors
)
num_total_pos
=
sum
(
pos_num
)
num_total_pos
=
sum
(
pos_num
_l
)
try
:
num_total_pos
=
paddle
.
distributed
.
all_reduce
(
num_total_pos
.
clone
(
))
/
paddle
.
distributed
.
get_world_size
()
...
...
@@ -198,10 +185,10 @@ class OTAHead(GFLHead):
num_total_pos
=
max
(
num_total_pos
,
1
)
loss_bbox_list
,
loss_dfl_list
,
loss_qfl_list
,
avg_factor
=
[],
[],
[],
[]
for
cls_score
,
bbox_pred
,
grid_cell
s
,
labels
,
label_weights
,
bbox_targets
,
stride
in
zip
(
cls_scores
,
bbox_preds
,
cent
or
s_list
,
labels_list
,
for
cls_score
,
bbox_pred
,
center_and_stride
s
,
labels
,
label_weights
,
bbox_targets
,
stride
in
zip
(
cls_scores
,
bbox_preds
,
cent
er_and_stride
s_list
,
labels_list
,
label_weights_list
,
bbox_targets_list
,
self
.
fpn_stride
):
grid_cells
=
grid_cell
s
.
reshape
([
-
1
,
4
])
center_and_strides
=
center_and_stride
s
.
reshape
([
-
1
,
4
])
cls_score
=
cls_score
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
[
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
bbox_pred
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
...
...
@@ -219,14 +206,14 @@ class OTAHead(GFLHead):
if
len
(
pos_inds
)
>
0
:
pos_bbox_targets
=
paddle
.
gather
(
bbox_targets
,
pos_inds
,
axis
=
0
)
pos_bbox_pred
=
paddle
.
gather
(
bbox_pred
,
pos_inds
,
axis
=
0
)
pos_
grid_cell_
centers
=
paddle
.
gather
(
grid_cell
s
[:,
:
-
2
],
pos_inds
,
axis
=
0
)
/
stride
pos_centers
=
paddle
.
gather
(
center_and_stride
s
[:,
:
-
2
],
pos_inds
,
axis
=
0
)
/
stride
weight_targets
=
F
.
sigmoid
(
cls_score
.
detach
())
weight_targets
=
paddle
.
gather
(
weight_targets
.
max
(
axis
=
1
,
keepdim
=
True
),
pos_inds
,
axis
=
0
)
pos_bbox_pred_corners
=
self
.
distribution_project
(
pos_bbox_pred
)
pos_decode_bbox_pred
=
distance2bbox
(
pos_
grid_cell_
centers
,
pos_decode_bbox_pred
=
distance2bbox
(
pos_centers
,
pos_bbox_pred_corners
)
pos_decode_bbox_targets
=
pos_bbox_targets
/
stride
bbox_iou
=
bbox_overlaps
(
...
...
@@ -236,7 +223,7 @@ class OTAHead(GFLHead):
score
[
pos_inds
.
numpy
()]
=
bbox_iou
pred_corners
=
pos_bbox_pred
.
reshape
([
-
1
,
self
.
reg_max
+
1
])
target_corners
=
bbox2distance
(
pos_
grid_cell_
centers
,
target_corners
=
bbox2distance
(
pos_centers
,
pos_decode_bbox_targets
,
self
.
reg_max
).
reshape
([
-
1
])
# regression loss
...
...
@@ -355,26 +342,24 @@ class OTAVFLHead(OTAHead):
for
featmap
in
cls_scores
]
decode_bbox_preds
=
[]
mlvl_centors
=
[]
with_stride
=
True
center_and_strides
=
[]
for
featmap_size
,
stride
,
bbox_pred
in
zip
(
featmap_sizes
,
self
.
fpn_stride
,
bbox_preds
):
# center in origin image
yy
,
xx
=
self
.
get_single_level_center_point
(
featmap_size
,
stride
,
self
.
cell_offset
)
if
with_stride
:
stride_w
=
paddle
.
full
((
len
(
xx
),
),
stride
)
stride_h
=
paddle
.
full
((
len
(
yy
),
),
stride
)
centers
=
paddle
.
stack
([
xx
,
yy
,
stride_w
,
stride_h
],
-
1
).
tile
(
[
num_imgs
,
1
,
1
])
mlvl_centors
.
append
(
centers
)
centers_in_feature
=
centers
.
reshape
([
-
1
,
4
])[:,
:
-
2
]
/
stride
strides
=
paddle
.
full
((
len
(
xx
),
),
stride
)
center_and_stride
=
paddle
.
stack
([
xx
,
yy
,
strides
,
strides
],
-
1
).
tile
([
num_imgs
,
1
,
1
])
center_and_strides
.
append
(
center_and_stride
)
center_in_feature
=
center_and_stride
.
reshape
(
[
-
1
,
4
])[:,
:
-
2
]
/
stride
bbox_pred
=
bbox_pred
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
[
num_imgs
,
-
1
,
4
*
(
self
.
reg_max
+
1
)])
pred_
corner
s
=
self
.
distribution_project
(
bbox_pred
)
decode_bbox_pred
=
distance2bbox
(
center
s_in_feature
,
pred_corner
s
).
reshape
([
num_imgs
,
-
1
,
4
])
decode_bbox_preds
.
append
(
decode_bbox_pred
*
stride
)
pred_
distance
s
=
self
.
distribution_project
(
bbox_pred
)
decode_bbox_pred
_wo_stride
=
distance2bbox
(
center
_in_feature
,
pred_distance
s
).
reshape
([
num_imgs
,
-
1
,
4
])
decode_bbox_preds
.
append
(
decode_bbox_pred
_wo_stride
*
stride
)
flatten_cls_preds
=
[
cls_pred
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
...
...
@@ -383,27 +368,33 @@ class OTAVFLHead(OTAHead):
]
flatten_cls_preds
=
paddle
.
concat
(
flatten_cls_preds
,
axis
=
1
)
flatten_bboxes
=
paddle
.
concat
(
decode_bbox_preds
,
axis
=
1
)
flatten_centors
=
paddle
.
concat
(
mlvl_centors
,
axis
=
1
)
gt_box
,
gt_labels
=
gt_meta
[
'gt_bbox'
],
gt_meta
[
'gt_class'
]
(
centors
,
labels
,
label_weights
,
bbox_targets
,
pos_num
)
=
multi_apply
(
self
.
_get_target_single
,
flatten_cls_preds
.
detach
(),
flatten_centors
.
detach
(),
flatten_bboxes
.
detach
(),
gt_box
,
gt_labels
)
centors
=
paddle
.
to_tensor
(
np
.
stack
(
centors
,
axis
=
0
))
labels
=
paddle
.
to_tensor
(
np
.
stack
(
labels
,
axis
=
0
))
label_weights
=
paddle
.
to_tensor
(
np
.
stack
(
label_weights
,
axis
=
0
))
bbox_targets
=
paddle
.
to_tensor
(
np
.
stack
(
bbox_targets
,
axis
=
0
))
centors_list
=
self
.
_images_to_levels
(
centors
,
num_level_anchors
)
flatten_center_and_strides
=
paddle
.
concat
(
center_and_strides
,
axis
=
1
)
gt_boxes
,
gt_labels
=
gt_meta
[
'gt_bbox'
],
gt_meta
[
'gt_class'
]
pos_num_l
,
label_l
,
label_weight_l
,
bbox_target_l
=
[],
[],
[],
[]
for
flatten_cls_pred
,
flatten_center_and_stride
,
flatten_bbox
,
gt_box
,
gt_label
\
in
zip
(
flatten_cls_preds
.
detach
(),
flatten_center_and_strides
.
detach
(),
\
flatten_bboxes
.
detach
(),
gt_boxes
,
gt_labels
):
pos_num
,
label
,
label_weight
,
bbox_target
=
self
.
_get_target_single
(
flatten_cls_pred
,
flatten_center_and_stride
,
flatten_bbox
,
gt_box
,
gt_label
)
pos_num_l
.
append
(
pos_num
)
label_l
.
append
(
label
)
label_weight_l
.
append
(
label_weight
)
bbox_target_l
.
append
(
bbox_target
)
labels
=
paddle
.
to_tensor
(
np
.
stack
(
label_l
,
axis
=
0
))
label_weights
=
paddle
.
to_tensor
(
np
.
stack
(
label_weight_l
,
axis
=
0
))
bbox_targets
=
paddle
.
to_tensor
(
np
.
stack
(
bbox_target_l
,
axis
=
0
))
center_and_strides_list
=
self
.
_images_to_levels
(
flatten_center_and_strides
,
num_level_anchors
)
labels_list
=
self
.
_images_to_levels
(
labels
,
num_level_anchors
)
label_weights_list
=
self
.
_images_to_levels
(
label_weights
,
num_level_anchors
)
bbox_targets_list
=
self
.
_images_to_levels
(
bbox_targets
,
num_level_anchors
)
num_total_pos
=
sum
(
pos_num
)
num_total_pos
=
sum
(
pos_num
_l
)
try
:
num_total_pos
=
paddle
.
distributed
.
all_reduce
(
num_total_pos
.
clone
(
))
/
paddle
.
distributed
.
get_world_size
()
...
...
@@ -411,17 +402,16 @@ class OTAVFLHead(OTAHead):
num_total_pos
=
max
(
num_total_pos
,
1
)
loss_bbox_list
,
loss_dfl_list
,
loss_vfl_list
,
avg_factor
=
[],
[],
[],
[]
for
cls_score
,
bbox_pred
,
grid_cell
s
,
labels
,
label_weights
,
bbox_targets
,
stride
in
zip
(
cls_scores
,
bbox_preds
,
cent
or
s_list
,
labels_list
,
for
cls_score
,
bbox_pred
,
center_and_stride
s
,
labels
,
label_weights
,
bbox_targets
,
stride
in
zip
(
cls_scores
,
bbox_preds
,
cent
er_and_stride
s_list
,
labels_list
,
label_weights_list
,
bbox_targets_list
,
self
.
fpn_stride
):
grid_cells
=
grid_cell
s
.
reshape
([
-
1
,
4
])
center_and_strides
=
center_and_stride
s
.
reshape
([
-
1
,
4
])
cls_score
=
cls_score
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
[
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
bbox_pred
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
(
[
-
1
,
4
*
(
self
.
reg_max
+
1
)])
bbox_targets
=
bbox_targets
.
reshape
([
-
1
,
4
])
labels
=
labels
.
reshape
([
-
1
])
label_weights
=
label_weights
.
reshape
([
-
1
])
bg_class_ind
=
self
.
num_classes
pos_inds
=
paddle
.
nonzero
(
...
...
@@ -433,14 +423,14 @@ class OTAVFLHead(OTAHead):
if
len
(
pos_inds
)
>
0
:
pos_bbox_targets
=
paddle
.
gather
(
bbox_targets
,
pos_inds
,
axis
=
0
)
pos_bbox_pred
=
paddle
.
gather
(
bbox_pred
,
pos_inds
,
axis
=
0
)
pos_
grid_cell_
centers
=
paddle
.
gather
(
grid_cell
s
[:,
:
-
2
],
pos_inds
,
axis
=
0
)
/
stride
pos_centers
=
paddle
.
gather
(
center_and_stride
s
[:,
:
-
2
],
pos_inds
,
axis
=
0
)
/
stride
weight_targets
=
F
.
sigmoid
(
cls_score
.
detach
())
weight_targets
=
paddle
.
gather
(
weight_targets
.
max
(
axis
=
1
,
keepdim
=
True
),
pos_inds
,
axis
=
0
)
pos_bbox_pred_corners
=
self
.
distribution_project
(
pos_bbox_pred
)
pos_decode_bbox_pred
=
distance2bbox
(
pos_
grid_cell_
centers
,
pos_decode_bbox_pred
=
distance2bbox
(
pos_centers
,
pos_bbox_pred_corners
)
pos_decode_bbox_targets
=
pos_bbox_targets
/
stride
bbox_iou
=
bbox_overlaps
(
...
...
@@ -453,7 +443,7 @@ class OTAVFLHead(OTAHead):
vfl_score
[
pos_inds
.
numpy
(),
pos_labels
]
=
bbox_iou
pred_corners
=
pos_bbox_pred
.
reshape
([
-
1
,
self
.
reg_max
+
1
])
target_corners
=
bbox2distance
(
pos_
grid_cell_
centers
,
target_corners
=
bbox2distance
(
pos_centers
,
pos_decode_bbox_targets
,
self
.
reg_max
).
reshape
([
-
1
])
# regression loss
...
...
ppdet/modeling/heads/solov2_head.py
浏览文件 @
c7c1e0e1
...
...
@@ -34,7 +34,9 @@ __all__ = ['SOLOv2Head']
@
register
class
SOLOv2MaskHead
(
nn
.
Layer
):
"""
MaskHead of SOLOv2
MaskHead of SOLOv2.
The code of this function is based on:
https://github.com/WXinlong/SOLO/blob/master/mmdet/models/mask_heads/mask_feat_head.py
Args:
in_channels (int): The channel number of input Tensor.
...
...
@@ -452,6 +454,10 @@ class SOLOv2Head(nn.Layer):
def
get_seg_single
(
self
,
cate_preds
,
seg_preds
,
kernel_preds
,
featmap_size
,
im_shape
,
scale_factor
):
"""
The code of this function is based on:
https://github.com/WXinlong/SOLO/blob/master/mmdet/models/anchor_heads/solov2_head.py#L385
"""
h
=
paddle
.
cast
(
im_shape
[
0
],
'int32'
)[
0
]
w
=
paddle
.
cast
(
im_shape
[
1
],
'int32'
)[
0
]
upsampled_size_out
=
[
featmap_size
[
0
]
*
4
,
featmap_size
[
1
]
*
4
]
...
...
ppdet/modeling/losses/gfocal_loss.py
浏览文件 @
c7c1e0e1
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/gfocal_loss.py
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
ppdet/modeling/losses/varifocal_loss.py
浏览文件 @
c7c1e0e1
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/varifocal_loss.py
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
ppdet/modeling/necks/__init__.py
浏览文件 @
c7c1e0e1
...
...
@@ -17,7 +17,6 @@ from . import yolo_fpn
from
.
import
hrfpn
from
.
import
ttf_fpn
from
.
import
centernet_fpn
from
.
import
pan
from
.
import
bifpn
from
.
import
csp_pan
...
...
@@ -27,6 +26,5 @@ from .hrfpn import *
from
.ttf_fpn
import
*
from
.centernet_fpn
import
*
from
.blazeface_fpn
import
*
from
.pan
import
*
from
.bifpn
import
*
from
.csp_pan
import
*
ppdet/modeling/necks/csp_pan.py
浏览文件 @
c7c1e0e1
...
...
@@ -11,10 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/yolox_pafpn.py
"""
# The code is based on:
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/yolox_pafpn.py
import
paddle
import
paddle.nn
as
nn
...
...
ppdet/modeling/necks/pan.py
已删除
100644 → 0
浏览文件 @
022db5ed
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
from
paddle.nn.initializer
import
XavierUniform
from
paddle.regularizer
import
L2Decay
from
ppdet.core.workspace
import
register
,
serializable
from
ppdet.modeling.layers
import
ConvNormLayer
from
..shape_spec
import
ShapeSpec
__all__
=
[
'PAN'
]
@
register
@
serializable
class
PAN
(
nn
.
Layer
):
"""
Path Aggregation Network, see https://arxiv.org/abs/1803.01534
Args:
in_channels (list[int]): input channels of each level which can be
derived from the output shape of backbone by from_config
out_channel (list[int]): output channel of each level
spatial_scales (list[float]): the spatial scales between input feature
maps and original input image which can be derived from the output
shape of backbone by from_config
start_level (int): Index of the start input backbone level used to
build the feature pyramid. Default: 0.
end_level (int): Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.
norm_type (string|None): The normalization type in FPN module. If
norm_type is None, norm will not be used after conv and if
norm_type is string, bn, gn, sync_bn are available. default None
"""
def
__init__
(
self
,
in_channels
,
out_channel
,
spatial_scales
=
[
0.125
,
0.0625
,
0.03125
],
start_level
=
0
,
end_level
=-
1
,
norm_type
=
None
):
super
(
PAN
,
self
).
__init__
()
self
.
out_channel
=
out_channel
self
.
num_ins
=
len
(
in_channels
)
self
.
spatial_scales
=
spatial_scales
if
end_level
==
-
1
:
self
.
end_level
=
self
.
num_ins
else
:
# if end_level < inputs, no extra level is allowed
self
.
end_level
=
end_level
assert
end_level
<=
len
(
in_channels
)
self
.
start_level
=
start_level
self
.
norm_type
=
norm_type
self
.
lateral_convs
=
[]
for
i
in
range
(
self
.
start_level
,
self
.
end_level
):
in_c
=
in_channels
[
i
-
self
.
start_level
]
if
self
.
norm_type
is
not
None
:
lateral
=
self
.
add_sublayer
(
'pan_lateral'
+
str
(
i
),
ConvNormLayer
(
ch_in
=
in_c
,
ch_out
=
self
.
out_channel
,
filter_size
=
1
,
stride
=
1
,
norm_type
=
self
.
norm_type
,
norm_decay
=
self
.
norm_decay
,
freeze_norm
=
self
.
freeze_norm
,
initializer
=
XavierUniform
(
fan_out
=
in_c
)))
else
:
lateral
=
self
.
add_sublayer
(
'pan_lateral'
+
str
(
i
),
nn
.
Conv2D
(
in_channels
=
in_c
,
out_channels
=
self
.
out_channel
,
kernel_size
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
XavierUniform
(
fan_out
=
in_c
))))
self
.
lateral_convs
.
append
(
lateral
)
@
classmethod
def
from_config
(
cls
,
cfg
,
input_shape
):
return
{
'in_channels'
:
[
i
.
channels
for
i
in
input_shape
],
}
def
forward
(
self
,
body_feats
):
laterals
=
[]
for
i
,
lateral_conv
in
enumerate
(
self
.
lateral_convs
):
laterals
.
append
(
lateral_conv
(
body_feats
[
i
+
self
.
start_level
]))
num_levels
=
len
(
laterals
)
for
i
in
range
(
1
,
num_levels
):
lvl
=
num_levels
-
i
upsample
=
F
.
interpolate
(
laterals
[
lvl
],
scale_factor
=
2.
,
mode
=
'bilinear'
,
)
laterals
[
lvl
-
1
]
+=
upsample
outs
=
[
laterals
[
i
]
for
i
in
range
(
num_levels
)]
for
i
in
range
(
0
,
num_levels
-
1
):
outs
[
i
+
1
]
+=
F
.
interpolate
(
outs
[
i
],
scale_factor
=
0.5
,
mode
=
'bilinear'
)
return
outs
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
self
.
out_channel
,
stride
=
1.
/
s
)
for
s
in
self
.
spatial_scales
]
static/ppdet/modeling/anchor_heads/solov2_head.py
浏览文件 @
c7c1e0e1
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/WXinlong/SOLO/blob/master/mmdet/models/anchor_heads/solov2_head.py
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
static/ppdet/modeling/mask_head/solo_mask_head.py
浏览文件 @
c7c1e0e1
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# https://github.com/WXinlong/SOLO/blob/master/mmdet/models/mask_heads/mask_feat_head.py
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录