layer.py 10.8 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69
import collections
Y
Yu Yang 已提交
70
import inspect
Q
qiaolongfei 已提交
71

Q
qiaolongfei 已提交
72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
D
dangqingqing 已提交
75

Q
qiaolongfei 已提交
76
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
77
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
78 79
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
80
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
81 82

import data_type
L
Luo Tao 已提交
83
import activation
Y
Yu Yang 已提交
84 85

__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
86

D
dangqingqing 已提交
87 88 89 90 91 92 93
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
94

Q
qiaolongfei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
110
class Layer(object):
111
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
112
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
113
        self.name = name
Q
qiaolongfei 已提交
114
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
115 116 117 118 119 120

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
121 122
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
123
                              collections.Sequence):
Q
qiaolongfei 已提交
124
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
125 126
                    context=context)
            else:
Q
qiaolongfei 已提交
127 128 129
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
130

131 132
        if self.name is None:
            return self.to_proto_impl(**kwargs)
D
dangqingqing 已提交
133
        elif self.name not in context:
Q
qiaolongfei 已提交
134
            context[self.name] = self.to_proto_impl(**kwargs)
D
dangqingqing 已提交
135

Q
qiaolongfei 已提交
136 137 138 139 140 141
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


L
Luo Tao 已提交
142 143 144
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
145 146 147
    else:
        wrapper = None

Q
qiaolongfei 已提交
148
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
149
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
150 151 152
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
153 154
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
155 156 157 158 159

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
160
            name = kwargs.get('name', None)
Q
qiaolongfei 已提交
161
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
162 163 164 165 166 167 168 169 170 171 172
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
173
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
174

Q
qiaolongfei 已提交
175
    return V2LayerImpl
Q
qiaolongfei 已提交
176 177


Q
qiaolongfei 已提交
178 179 180 181 182 183 184
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
185
    def __init__(self, name, type, **kwargs):
186
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
187

Q
qiaolongfei 已提交
188
        self.type = type
Q
qiaolongfei 已提交
189 190
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
191 192 193 194 195

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
196
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
197 198
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
199 200
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
201 202 203
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


204 205 206 207 208 209 210 211 212 213
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
214
        pass
215 216 217 218 219 220 221 222 223 224

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
225
        self.__inputs__ = []
226
        if input is not None:
D
dangqingqing 已提交
227
            self.__inputs__ = input
228

D
dangqingqing 已提交
229 230
        other_kwargs = dict()
        other_kwargs['name'] = name
231 232 233 234 235
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

D
dangqingqing 已提交
236 237
        parent_layers = {"input": self.__inputs__}
        super(MixedLayerV2, self).__init__(name, parent_layers)
238 239 240 241
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
242
            self.__inputs__.append(other)
243 244 245 246 247
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
D
dangqingqing 已提交
248
        assert len(self.__inputs__) == 0
249 250 251 252 253 254 255 256 257 258 259
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
260
        return getattr(conf_helps, self.__method_name__)(**args)
261 262 263


@wrap_name_default("mixed")
D
dangqingqing 已提交
264
@wrap_act_default(act=activation.Linear())
265 266 267 268 269 270 271 272 273 274 275
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Q
qiaolongfei 已提交
276
LayerV2 = Layer
Q
qiaolongfei 已提交
277
data = DataLayerV2
L
Luo Tao 已提交
278 279 280
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel

Y
Yu Yang 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

def __layer_name_mapping__(inname):
    if inname in ['data_layer', 'memory', 'mixed_layer']:
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
        lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left', 'right'],
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
326

327
# convert projection
D
dangqingqing 已提交
328
for prj in __projection_names__:
L
Luo Tao 已提交
329 330
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
331 332 333 334 335 336 337 338

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
339 340
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)