layer.py 9.1 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
Q
qiaolongfei 已提交
75 76

import data_type
L
Luo Tao 已提交
77 78
import activation
import attr
Q
qiaolongfei 已提交
79

Q
qiaolongfei 已提交
80 81
__all__ = [
    'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
L
Luo Tao 已提交
82 83 84
    'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
    'sum_cost', 'huber_cost'
Q
qiaolongfei 已提交
85 86
]

Q
qiaolongfei 已提交
87

Q
qiaolongfei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
103
class Layer(object):
Q
qiaolongfei 已提交
104 105
    def __init__(self, name, parent_layers):
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
106 107
        assert isinstance(name, basestring)
        self.name = name
Q
qiaolongfei 已提交
108
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
109 110 111 112 113 114

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
115 116
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
117
                              collections.Sequence):
Q
qiaolongfei 已提交
118
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
119 120
                    context=context)
            else:
Q
qiaolongfei 已提交
121 122 123
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
124 125 126 127 128 129 130 131 132

        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


Q
qiaolongfei 已提交
133
def __convert_to_v2__(method_name, name_prefix, parent_names):
Q
qiaolongfei 已提交
134 135 136 137 138
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
139
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
140 141 142 143
        def __init__(self, name=None, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
144 145
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
146 147 148 149 150

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
151
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(name=self.name, **args)

Q
qiaolongfei 已提交
165
    return V2LayerImpl
Q
qiaolongfei 已提交
166 167


Q
qiaolongfei 已提交
168 169 170 171 172 173 174
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
175
    def __init__(self, name, type, **kwargs):
176
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
177

Q
qiaolongfei 已提交
178
        self.type = type
Q
qiaolongfei 已提交
179 180
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
181 182 183 184 185

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
186
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
187 188
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
189 190
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
191 192 193 194
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


data = DataLayerV2
Q
qiaolongfei 已提交
195 196
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
L
Luo Tao 已提交
197
    'maxid_layer', name_prefix='maxid', parent_names=['input'])
Q
qiaolongfei 已提交
198
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
199 200
    'classification_cost',
    name_prefix='classification_cost',
L
Luo Tao 已提交
201 202 203 204 205
    parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
    'regression_cost',
    name_prefix='regression_cost',
    parent_names=['input', 'label', 'weight'])
Q
qiaolongfei 已提交
206 207 208 209
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
L
Luo Tao 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
    'cross_entropy_with_selfnorm',
    name_prefix='cross_entropy_with_selfnorm',
    parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
    'multi_binary_label_cross_entropy',
    name_prefix='multi_binary_label_cross_entropy',
    parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
    'rank_cost',
    name_prefix='rank_cost',
    parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
    'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
    'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
    'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
Q
qiaolongfei 已提交
228 229

if __name__ == '__main__':
230 231
    pixel = data(name='pixel', type=data_type.dense_vector(784))
    label = data(name='label', type=data_type.integer_value(10))
L
Luo Tao 已提交
232 233 234
    weight = data(name='weight', type=data_type.dense_vector(10))
    score = data(name='score', type=data_type.dense_vector(1))

L
Luo Tao 已提交
235 236 237 238 239
    hidden = fc(input=pixel,
                size=100,
                act=activation.Sigmoid(),
                param_attr=attr.Param(name='hidden'))
    inference = fc(input=hidden, size=10, act=activation.Softmax())
Q
qiaolongfei 已提交
240 241
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
L
Luo Tao 已提交
242 243 244 245 246 247 248 249 250 251
    cost2 = classification_cost(input=inference, label=label, weight=weight)
    cost3 = cross_entropy_cost(input=inference, label=label)
    cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
    cost5 = regression_cost(input=inference, label=label)
    cost6 = regression_cost(input=inference, label=label, weight=weight)
    cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
    cost8 = rank_cost(left=score, right=score, label=score)
    cost9 = lambda_cost(input=inference, score=score)
    cost10 = sum_cost(input=inference)
    cost11 = huber_cost(input=score, label=label)
Q
qiaolongfei 已提交
252 253

    print parse_network(cost1, cost2)
L
Luo Tao 已提交
254 255 256
    print parse_network(cost3, cost4)
    print parse_network(cost5, cost6)
    print parse_network(cost7, cost8, cost9, cost10, cost11)
Q
qiaolongfei 已提交
257
    print parse_network(inference, maxid)