layer.py 15.4 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
75 76 77
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
78 79

import data_type
L
Luo Tao 已提交
80 81
import activation
import attr
Q
qiaolongfei 已提交
82

83 84
#import pudb;pudb.set_trace()

Q
qiaolongfei 已提交
85
__all__ = [
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    'parse_network',
    'data',
    'fc',
    'max_id',
    'classification_cost',
    'cross_entropy_cost',
    'cross_entropy_with_selfnorm_cost',
    'regression_cost',
    'multi_binary_label_cross_entropy_cost',
    'rank_cost',
    'lambda_cost',
    'sum_cost',
    'huber_cost'
    'full_matrix_projection',
    'trans_full_matrix_projection',
    'table_projection',
    'identity_projection',
    'scaling_projection',
    'dotmul_projection',
    'context_projection',
    'conv_projection',
Q
qiaolongfei 已提交
107 108
]

Q
qiaolongfei 已提交
109

Q
qiaolongfei 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
125
class Layer(object):
126
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
127
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
128
        self.name = name
Q
qiaolongfei 已提交
129
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
130 131 132 133 134 135

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
136 137
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
138
                              collections.Sequence):
Q
qiaolongfei 已提交
139
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
140 141
                    context=context)
            else:
Q
qiaolongfei 已提交
142 143 144
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
145

146 147 148
        if self.name is None:
            return self.to_proto_impl(**kwargs)

Q
qiaolongfei 已提交
149 150 151 152 153 154 155 156
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


157
def __convert_to_v2__(method_name, name_prefix=None, parent_names=None):
Q
qiaolongfei 已提交
158 159 160 161 162
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
163
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
164 165 166 167
        def __init__(self, name=None, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
168 169
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
170 171 172 173 174

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
175
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
176 177 178 179 180 181 182 183 184 185 186
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
187
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
188

Q
qiaolongfei 已提交
189
    return V2LayerImpl
Q
qiaolongfei 已提交
190 191


Q
qiaolongfei 已提交
192 193 194 195 196 197 198
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
199
    def __init__(self, name, type, **kwargs):
200
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
201

Q
qiaolongfei 已提交
202
        self.type = type
Q
qiaolongfei 已提交
203 204
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
205 206 207 208 209

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
210
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
211 212
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
213 214
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
215 216 217
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
        def __init__(self):
            Exception.__init__(self)

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False

        self.__parent_layers__ = dict()
        other_kwargs = dict()
        self.input_name = 'input'
        self.__parent_layers__[self.input_name] = []
        if input is not None:
            self.__parent_layers__[self.input_name] = input

        self.name = name
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

        Layer.__init__(self, name, self.__parent_layers__)
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
            self.__parent_layers__[self.input_name].append(other)
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
        assert len(self.__parent_layers__[self.input_name]) == 0
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


@wrap_name_default("mixed")
@wrap_act_default(act=conf_helps.LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Q
qiaolongfei 已提交
293
data = DataLayerV2
Q
qiaolongfei 已提交
294 295
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
L
Luo Tao 已提交
296
    'maxid_layer', name_prefix='maxid', parent_names=['input'])
Q
qiaolongfei 已提交
297
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
298 299
    'classification_cost',
    name_prefix='classification_cost',
L
Luo Tao 已提交
300 301 302 303 304
    parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
    'regression_cost',
    name_prefix='regression_cost',
    parent_names=['input', 'label', 'weight'])
Q
qiaolongfei 已提交
305 306 307 308
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
L
Luo Tao 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
    'cross_entropy_with_selfnorm',
    name_prefix='cross_entropy_with_selfnorm',
    parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
    'multi_binary_label_cross_entropy',
    name_prefix='multi_binary_label_cross_entropy',
    parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
    'rank_cost',
    name_prefix='rank_cost',
    parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
    'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
    'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
    'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
Q
qiaolongfei 已提交
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
# convert projection
projection_list = [
    # [V1_method_name], all the parent_names is `input`
    'full_matrix_projection',
    'trans_full_matrix_projection',
    'table_projection',
    'scaling_projection',
    'dotmul_projection',
    'context_projection',
    'conv_projection',
    'identity_projection',
]
for prj in projection_list:
    globals()[prj] = __convert_to_v2__(prj, parent_names=['input'])

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
    globals()[op[0]] = __convert_to_v2__(op[0], parent_names=op[1])
L
Luo Tao 已提交
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

def test_projection():
    """
    TODO: move to tests file
    """
    input = data(name='data', type=data_type.dense_vector(784))
    word = data(name='word', type=data_type.integer_value_sequence(10000))
    fc0 = fc(input=input, size=100, act=conf_helps.SigmoidActivation())
    fc1 = fc(input=input, size=200, act=conf_helps.SigmoidActivation())
    mixed0 = mixed(
        size=256,
        input=[
            full_matrix_projection(input=fc0), full_matrix_projection(input=fc1)
        ])
    with mixed(size=200) as mixed1:
        mixed1 += full_matrix_projection(input=fc0)
        mixed1 += identity_projection(input=fc1)

    table = table_projection(input=word)
    emb0 = mixed(size=512, input=table)
    with mixed(size=512) as emb1:
        emb1 += table

    scale = scaling_projection(input=fc0)
    scale0 = mixed(size=100, input=scale)
    with mixed(size=100) as scale1:
        scale1 += scale

    dotmul = dotmul_projection(input=fc0)
    dotmul0 = mixed(size=100, input=dotmul)
    with mixed(size=100) as dotmul1:
        dotmul1 += dotmul

    context = context_projection(input=fc0, context_len=5)
    context0 = mixed(size=100, input=context)
    with mixed(size=100) as context1:
        context1 += context

    conv = conv_projection(
        input=input,
        filter_size=1,
        num_channels=1,
        num_filters=128,
        stride=1,
        padding=0)
    conv0 = mixed(input=conv, bias_attr=True)
    with mixed(bias_attr=True) as conv1:
        conv1 += conv

    print parse_network(mixed0)
    print parse_network(mixed1)
    print parse_network(emb0)
    print parse_network(emb1)
    print parse_network(scale0)
    print parse_network(scale1)
    print parse_network(dotmul0)
    print parse_network(dotmul1)
    print parse_network(conv0)
    print parse_network(conv1)


def test_operator():
    """
    TODO: move to tests file
    """
    ipt0 = data(name='data', type=data_type.dense_vector(784))
    ipt1 = data(name='word', type=data_type.dense_vector(128))
    fc0 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation())
    fc1 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation())

    dotmul_op = dotmul_operator(a=fc0, b=fc1)
    dotmul0 = mixed(input=dotmul_op)
    with mixed() as dotmul1:
        dotmul1 += dotmul_op

    conv = conv_operator(
        img=ipt0,
        filter=ipt1,
        filter_size=1,
        num_channels=1,
        num_filters=128,
        stride=1,
        padding=0)
    conv0 = mixed(input=conv)
    with mixed() as conv1:
        conv1 += conv

    print parse_network(dotmul0)
    print parse_network(dotmul1)
    print parse_network(conv0)
    print parse_network(conv1)


def test_cost(pixel, label, weight, score):
L
Luo Tao 已提交
446 447 448 449 450
    hidden = fc(input=pixel,
                size=100,
                act=activation.Sigmoid(),
                param_attr=attr.Param(name='hidden'))
    inference = fc(input=hidden, size=10, act=activation.Softmax())
Q
qiaolongfei 已提交
451 452
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
L
Luo Tao 已提交
453 454 455 456 457 458 459 460 461 462
    cost2 = classification_cost(input=inference, label=label, weight=weight)
    cost3 = cross_entropy_cost(input=inference, label=label)
    cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
    cost5 = regression_cost(input=inference, label=label)
    cost6 = regression_cost(input=inference, label=label, weight=weight)
    cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
    cost8 = rank_cost(left=score, right=score, label=score)
    cost9 = lambda_cost(input=inference, score=score)
    cost10 = sum_cost(input=inference)
    cost11 = huber_cost(input=score, label=label)
Q
qiaolongfei 已提交
463 464

    print parse_network(cost1, cost2)
L
Luo Tao 已提交
465 466 467
    print parse_network(cost3, cost4)
    print parse_network(cost5, cost6)
    print parse_network(cost7, cost8, cost9, cost10, cost11)
Q
qiaolongfei 已提交
468
    print parse_network(inference, maxid)
469 470 471 472 473 474 475 476 477 478 479


if __name__ == '__main__':
    pixel = data(name='pixel', type=data_type.dense_vector(784))
    label = data(name='label', type=data_type.integer_value(10))
    weight = data(name='weight', type=data_type.dense_vector(10))
    score = data(name='score', type=data_type.dense_vector(1))

    test_cost(pixel, label, weight, score)
    test_projection()
    test_operator()