downpour_worker.cc 15.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17 18 19 20 21
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

22
void DownpourWorker::Initialize(const TrainerDesc& desc) {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  param_ = desc.downpour_param();
  for (size_t i = 0; i < param_.sparse_table_size(); ++i) {
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
    for (size_t j = 0; j < table.sparse_key_name_size(); ++j) {
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
    for (size_t j = 0; j < table.sparse_value_name_size(); ++j) {
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
    for (size_t j = 0; j < table.sparse_grad_name_size(); ++j) {
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
40
    label_var_name_[table_id] = table.label_var_name();
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  }

  for (size_t i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
    for (size_t j = 0; j < table.dense_value_name_size(); ++j) {
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (size_t j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
  for (size_t i = 0; i < param_.skip_ops_size(); ++i) {
    skip_ops_[i] = param_.skip_ops(i);
  }
60

61 62 63
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

64
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
65
  fetch_config_ = desc.fetch_config();
66 67
}

68
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
69
  uint64_t table_id = static_cast<uint64_t>(
70
      param_.program_config(0).pull_sparse_table_id(table_idx));
71

H
heqiaozhi 已提交
72 73 74 75 76 77 78
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
79 80 81
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
82
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
83 84 85 86 87
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

  int global_index = 0;
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
88 89
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
90 91 92 93 94
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int fea_idx = 0;
    // tensor->lod()[0].size() == batch_size + 1
95 96
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
97 98 99 100
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
101 102
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
103 104 105 106 107 108 109 110
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
111
  uint64_t table_id = static_cast<uint64_t>(
112
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
113 114 115 116 117 118 119 120

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

  std::vector<float> init_value(table.emb_dim());
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
        memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
               sizeof(float) * table.emb_dim());
        continue;
      }
      memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * table.emb_dim());
      fea_idx++;
    }
  }
}

154 155 156
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
188
  uint64_t total_inst = 0;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
212
      total_time += timeline.ElapsedSec();
213 214 215
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
216
      total_time += timeline.ElapsedSec();
217 218 219 220
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
221
      total_time += timeline.ElapsedSec();
222 223 224 225 226 227 228 229 230 231 232 233 234 235
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
236
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
237
        op->Run(*thread_scope_, place_);
238
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
239 240 241 242 243 244
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

245 246 247 248 249 250 251 252 253 254 255
    if (need_to_push_sparse_) {
      for (size_t i = 0;
           i < param_.program_config(0).push_sparse_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
256
        }
257 258 259 260 261 262 263 264
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
            &feature_grads_[tid], &push_sparse_status_);
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
265
      }
266 267 268
    }

    if (need_to_push_dense_) {
269
      timeline.Start();
270 271 272 273 274 275 276
      for (size_t i = 0;
           i < param_.program_config(0).push_dense_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
      }
277
      timeline.Pause();
278
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
279
      total_time += timeline.ElapsedSec();
280 281 282 283 284 285 286 287 288 289 290 291
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
292 293
      }

294 295
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
296 297 298
      }
    }

299 300 301 302 303 304 305
    if (need_to_push_sparse_) {
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
306

307 308 309
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
310

311 312 313 314 315 316 317 318 319
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
      for (size_t i = 0;
           i < param_.program_config(0).push_dense_table_id_size(); ++i) {
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
320 321
    }

D
dongdaxiang 已提交
322
    PrintFetchVars();
323
    thread_scope_->DropKids();
D
dongdaxiang 已提交
324
    total_inst += cur_batch;
325 326 327 328 329 330 331 332 333 334 335
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
336
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
337 338
      }
    }
D
dongdaxiang 已提交
339
    timeline.Start();
340
  }
341 342
}

343
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
344
  VLOG(3) << "Begin to train files";
345
  platform::SetNumThreads(1);
346
  device_reader_->Start();
347 348
  int batch_cnt = 0;
  int cur_batch;
349
  while ((cur_batch = device_reader_->Next()) > 0) {
350
    // pull sparse here
H
heqiaozhi 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
365 366 367
      CollectLabelInfo(i);
      FillSparseValue(i);
    }
D
dongdaxiang 已提交
368
    VLOG(3) << "fill sparse value for all sparse table done.";
369 370 371

    // do computation here
    for (auto& op : ops_) {
372 373 374 375 376 377 378 379 380 381
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
382 383 384
    }

    // push gradients here
H
heqiaozhi 已提交
385 386 387 388 389 390 391 392 393 394 395
    for (size_t i = 0; i < param_.program_config(0).push_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
396 397
      fleet_ptr_->PushSparseVarsWithLabelAsync(
          *thread_scope_, tid, features_[tid], feature_labels_[tid],
H
heqiaozhi 已提交
398 399
          sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
          &feature_grads_[tid], &push_sparse_status_);
400 401
    }

H
heqiaozhi 已提交
402 403 404 405
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
406 407 408 409
      fleet_ptr_->PushDenseVarsAsync(
          *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
    }

D
dongdaxiang 已提交
410
    VLOG(3) << "push sparse and dense gradient done.";
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    // the following code should be more precise and clean
    // TODO(guru4elephant)
    int32_t tmp_push_dense_wait_times = -1;
    int32_t tmp_push_sparse_wait_times = -1;
    static uint32_t push_dense_wait_times =
        static_cast<uint32_t>(tmp_push_dense_wait_times);
    static uint32_t push_sparse_wait_times =
        static_cast<uint32_t>(tmp_push_sparse_wait_times);

    if (push_dense_status_.size() >= push_dense_wait_times) {
      for (auto& t : push_dense_status_) {
        t.wait();
      }
      push_dense_status_.resize(0);
    }

    if (tmp_push_dense_wait_times == -1) {
      push_dense_status_.resize(0);
    }

    if (push_sparse_status_.size() >= push_sparse_wait_times) {
      for (auto& t : push_sparse_status_) {
        t.wait();
      }
      push_sparse_status_.resize(0);
    }

    if (tmp_push_sparse_wait_times == -1) {
      push_sparse_status_.resize(0);
    }

H
heqiaozhi 已提交
442 443 444 445
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
446 447
      pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
    }
448

D
dongdaxiang 已提交
449
    PrintFetchVars();
450 451 452 453 454 455 456
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle