downpour_worker.cc 15.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17 18 19 20 21
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

22
void DownpourWorker::Initialize(const TrainerDesc& desc) {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  param_ = desc.downpour_param();
  for (size_t i = 0; i < param_.sparse_table_size(); ++i) {
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
    for (size_t j = 0; j < table.sparse_key_name_size(); ++j) {
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
    for (size_t j = 0; j < table.sparse_value_name_size(); ++j) {
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
    for (size_t j = 0; j < table.sparse_grad_name_size(); ++j) {
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
40
    label_var_name_[table_id] = table.label_var_name();
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  }

  for (size_t i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
    for (size_t j = 0; j < table.dense_value_name_size(); ++j) {
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (size_t j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
  for (size_t i = 0; i < param_.skip_ops_size(); ++i) {
    skip_ops_[i] = param_.skip_ops(i);
  }
60

D
dongdaxiang 已提交
61 62 63 64 65 66 67
  fetch_var_names_.resize(desc.fetch_var_names_size());
  for (size_t i = 0; i < desc.fetch_var_names_size(); ++i) {
    fetch_var_names_[i] = desc.fetch_var_names(i);
  }

  batch_cnt_per_print_ = static_cast<int>(desc.batch_per_print());
  skip_ops_.resize(param_.skip_ops_size());
68
  fleet_ptr_ = FleetWrapper::GetInstance();
69 70
}

71
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
72
  uint64_t table_id = static_cast<uint64_t>(
73
      param_.program_config(0).pull_sparse_table_id(table_idx));
74

H
heqiaozhi 已提交
75 76 77 78 79 80 81
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
82 83 84
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
85
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
86 87 88 89 90
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

  int global_index = 0;
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
91 92
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
93 94 95 96 97
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int fea_idx = 0;
    // tensor->lod()[0].size() == batch_size + 1
98 99
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
100 101 102 103
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
104 105
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
106 107 108 109 110 111 112 113
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
114
  uint64_t table_id = static_cast<uint64_t>(
115
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
116 117 118 119 120 121 122 123

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

  std::vector<float> init_value(table.emb_dim());
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
        memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
               sizeof(float) * table.emb_dim());
        continue;
      }
      memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * table.emb_dim());
      fea_idx++;
    }
  }
}

157 158 159
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
214
      total_time += timeline.ElapsedSec();
215 216 217
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
218
      total_time += timeline.ElapsedSec();
219 220 221 222
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
223
      total_time += timeline.ElapsedSec();
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
        op->Run(*thread_scope_, place_);
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

    for (size_t i = 0; i < param_.program_config(0).push_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PushSparseVarsWithLabelAsync(
          *thread_scope_, tid, features_[tid], feature_labels_[tid],
          sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
          &feature_grads_[tid], &push_sparse_status_);
      timeline.Pause();
      push_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
263
      total_time += timeline.ElapsedSec();
264 265 266 267 268 269 270 271 272 273 274 275
    }

    timeline.Start();
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
      fleet_ptr_->PushDenseVarsAsync(
          *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
    }
    timeline.Pause();
    push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
276
    total_time += timeline.ElapsedSec();
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    VLOG(3) << "push sparse and dense gradient done.";
    int32_t tmp_push_dense_wait_times = -1;
    int32_t tmp_push_sparse_wait_times = -1;
    static uint32_t push_dense_wait_times =
        static_cast<uint32_t>(tmp_push_dense_wait_times);
    static uint32_t push_sparse_wait_times =
        static_cast<uint32_t>(tmp_push_sparse_wait_times);
    if (push_dense_status_.size() >= push_dense_wait_times) {
      for (auto& t : push_dense_status_) {
        t.wait();
      }
      push_dense_status_.resize(0);
    }

    if (tmp_push_dense_wait_times == -1) {
      push_dense_status_.resize(0);
    }

    if (push_sparse_status_.size() >= push_sparse_wait_times) {
      for (auto& t : push_sparse_status_) {
        t.wait();
      }
      push_sparse_status_.resize(0);
    }

    if (tmp_push_sparse_wait_times == -1) {
      push_sparse_status_.resize(0);
    }
    VLOG(3) << "going to increase thread version";

    VLOG(3) << "push dense table id size: "
            << param_.program_config(0).push_dense_table_id_size();

    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
      pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
    }

    thread_scope_->DropKids();
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
      }
    }
D
dongdaxiang 已提交
331
    timeline.Start();
332
  }
333 334
}

335
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
336
  VLOG(3) << "Begin to train files";
337
  platform::SetNumThreads(1);
338
  device_reader_->Start();
339 340
  int batch_cnt = 0;
  int cur_batch;
341
  while ((cur_batch = device_reader_->Next()) > 0) {
342
    // pull sparse here
H
heqiaozhi 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
357 358 359
      CollectLabelInfo(i);
      FillSparseValue(i);
    }
D
dongdaxiang 已提交
360
    VLOG(3) << "fill sparse value for all sparse table done.";
361 362 363

    // do computation here
    for (auto& op : ops_) {
364 365 366 367 368 369 370 371 372 373
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
374 375 376
    }

    // push gradients here
H
heqiaozhi 已提交
377 378 379 380 381 382 383 384 385 386 387
    for (size_t i = 0; i < param_.program_config(0).push_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
388 389
      fleet_ptr_->PushSparseVarsWithLabelAsync(
          *thread_scope_, tid, features_[tid], feature_labels_[tid],
H
heqiaozhi 已提交
390 391
          sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
          &feature_grads_[tid], &push_sparse_status_);
392 393
    }

H
heqiaozhi 已提交
394 395 396 397
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
398 399 400 401
      fleet_ptr_->PushDenseVarsAsync(
          *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
    }

D
dongdaxiang 已提交
402
    VLOG(3) << "push sparse and dense gradient done.";
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    // the following code should be more precise and clean
    // TODO(guru4elephant)
    int32_t tmp_push_dense_wait_times = -1;
    int32_t tmp_push_sparse_wait_times = -1;
    static uint32_t push_dense_wait_times =
        static_cast<uint32_t>(tmp_push_dense_wait_times);
    static uint32_t push_sparse_wait_times =
        static_cast<uint32_t>(tmp_push_sparse_wait_times);

    if (push_dense_status_.size() >= push_dense_wait_times) {
      for (auto& t : push_dense_status_) {
        t.wait();
      }
      push_dense_status_.resize(0);
    }

    if (tmp_push_dense_wait_times == -1) {
      push_dense_status_.resize(0);
    }

    if (push_sparse_status_.size() >= push_sparse_wait_times) {
      for (auto& t : push_sparse_status_) {
        t.wait();
      }
      push_sparse_status_.resize(0);
    }

    if (tmp_push_sparse_wait_times == -1) {
      push_sparse_status_.resize(0);
    }

H
heqiaozhi 已提交
434 435 436 437
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
438 439
      pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
    }
440

441 442 443 444 445 446 447
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle