downpour_worker.cc 15.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17 18 19 20 21
#include "paddle/fluid/platform/cpu_helper.h"

namespace paddle {
namespace framework {

22
void DownpourWorker::Initialize(const TrainerDesc& desc) {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  param_ = desc.downpour_param();
  for (size_t i = 0; i < param_.sparse_table_size(); ++i) {
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
    for (size_t j = 0; j < table.sparse_key_name_size(); ++j) {
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
    for (size_t j = 0; j < table.sparse_value_name_size(); ++j) {
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
    for (size_t j = 0; j < table.sparse_grad_name_size(); ++j) {
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
40
    label_var_name_[table_id] = table.label_var_name();
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  }

  for (size_t i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
    for (size_t j = 0; j < table.dense_value_name_size(); ++j) {
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (size_t j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
  for (size_t i = 0; i < param_.skip_ops_size(); ++i) {
    skip_ops_[i] = param_.skip_ops(i);
  }
60

D
dongdaxiang 已提交
61 62 63 64 65 66 67
  fetch_var_names_.resize(desc.fetch_var_names_size());
  for (size_t i = 0; i < desc.fetch_var_names_size(); ++i) {
    fetch_var_names_[i] = desc.fetch_var_names(i);
  }

  batch_cnt_per_print_ = static_cast<int>(desc.batch_per_print());
  skip_ops_.resize(param_.skip_ops_size());
68
  fleet_ptr_ = FleetWrapper::GetInstance();
69 70
}

71
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
72
  uint64_t table_id = static_cast<uint64_t>(
73
      param_.program_config(0).pull_sparse_table_id(table_idx));
74

H
heqiaozhi 已提交
75 76 77 78 79 80 81
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
82 83 84
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
85
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
86 87 88 89 90
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

  int global_index = 0;
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
91 92
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
93 94 95 96 97
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int fea_idx = 0;
    // tensor->lod()[0].size() == batch_size + 1
98 99
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
100 101 102 103
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
104 105
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
106 107 108 109 110 111 112 113
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
114
  uint64_t table_id = static_cast<uint64_t>(
115
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
116 117 118 119 120 121 122 123

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

  std::vector<float> init_value(table.emb_dim());
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
        memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
               sizeof(float) * table.emb_dim());
        continue;
      }
      memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * table.emb_dim());
      fea_idx++;
    }
  }
}

157 158 159
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
191
  uint64_t total_inst = 0;
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    VLOG(3) << "program config size: " << param_.program_config_size();
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
215
      total_time += timeline.ElapsedSec();
216 217 218
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
219
      total_time += timeline.ElapsedSec();
220 221 222 223
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
224
      total_time += timeline.ElapsedSec();
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
        op->Run(*thread_scope_, place_);
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

    for (size_t i = 0; i < param_.program_config(0).push_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      timeline.Start();
      fleet_ptr_->PushSparseVarsWithLabelAsync(
          *thread_scope_, tid, features_[tid], feature_labels_[tid],
          sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
          &feature_grads_[tid], &push_sparse_status_);
      timeline.Pause();
      push_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
264
      total_time += timeline.ElapsedSec();
265 266 267 268 269 270 271 272 273 274 275 276
    }

    timeline.Start();
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
      fleet_ptr_->PushDenseVarsAsync(
          *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
    }
    timeline.Pause();
    push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
277
    total_time += timeline.ElapsedSec();
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    VLOG(3) << "push sparse and dense gradient done.";
    int32_t tmp_push_dense_wait_times = -1;
    int32_t tmp_push_sparse_wait_times = -1;
    static uint32_t push_dense_wait_times =
        static_cast<uint32_t>(tmp_push_dense_wait_times);
    static uint32_t push_sparse_wait_times =
        static_cast<uint32_t>(tmp_push_sparse_wait_times);
    if (push_dense_status_.size() >= push_dense_wait_times) {
      for (auto& t : push_dense_status_) {
        t.wait();
      }
      push_dense_status_.resize(0);
    }

    if (tmp_push_dense_wait_times == -1) {
      push_dense_status_.resize(0);
    }

    if (push_sparse_status_.size() >= push_sparse_wait_times) {
      for (auto& t : push_sparse_status_) {
        t.wait();
      }
      push_sparse_status_.resize(0);
    }

    if (tmp_push_sparse_wait_times == -1) {
      push_sparse_status_.resize(0);
    }
    VLOG(3) << "going to increase thread version";

    VLOG(3) << "push dense table id size: "
            << param_.program_config(0).push_dense_table_id_size();

    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
      pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
    }

    thread_scope_->DropKids();
D
dongdaxiang 已提交
319
    total_inst += cur_batch;
320 321 322 323 324 325 326 327 328 329 330
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
331
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
332 333
      }
    }
D
dongdaxiang 已提交
334
    timeline.Start();
335
  }
336 337
}

338
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
339
  VLOG(3) << "Begin to train files";
340
  platform::SetNumThreads(1);
341
  device_reader_->Start();
342 343
  int batch_cnt = 0;
  int cur_batch;
344
  while ((cur_batch = device_reader_->Next()) > 0) {
345
    // pull sparse here
H
heqiaozhi 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359
    for (size_t i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
      fleet_ptr_->PullSparseVarsSync(*thread_scope_, tid,
                                     sparse_key_names_[tid], &features_[tid],
                                     &feature_values_[tid], table.fea_dim());
360 361 362
      CollectLabelInfo(i);
      FillSparseValue(i);
    }
D
dongdaxiang 已提交
363
    VLOG(3) << "fill sparse value for all sparse table done.";
364 365 366

    // do computation here
    for (auto& op : ops_) {
367 368 369 370 371 372 373 374 375 376
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
377 378 379
    }

    // push gradients here
H
heqiaozhi 已提交
380 381 382 383 384 385 386 387 388 389 390
    for (size_t i = 0; i < param_.program_config(0).push_sparse_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_sparse_table_id(i));
      TableParameter table;
      for (auto i : param_.sparse_table()) {
        if (i.table_id() == tid) {
          table = i;
          break;
        }
      }
391 392
      fleet_ptr_->PushSparseVarsWithLabelAsync(
          *thread_scope_, tid, features_[tid], feature_labels_[tid],
H
heqiaozhi 已提交
393 394
          sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
          &feature_grads_[tid], &push_sparse_status_);
395 396
    }

H
heqiaozhi 已提交
397 398 399 400
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
401 402 403 404
      fleet_ptr_->PushDenseVarsAsync(
          *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_);
    }

D
dongdaxiang 已提交
405
    VLOG(3) << "push sparse and dense gradient done.";
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    // the following code should be more precise and clean
    // TODO(guru4elephant)
    int32_t tmp_push_dense_wait_times = -1;
    int32_t tmp_push_sparse_wait_times = -1;
    static uint32_t push_dense_wait_times =
        static_cast<uint32_t>(tmp_push_dense_wait_times);
    static uint32_t push_sparse_wait_times =
        static_cast<uint32_t>(tmp_push_sparse_wait_times);

    if (push_dense_status_.size() >= push_dense_wait_times) {
      for (auto& t : push_dense_status_) {
        t.wait();
      }
      push_dense_status_.resize(0);
    }

    if (tmp_push_dense_wait_times == -1) {
      push_dense_status_.resize(0);
    }

    if (push_sparse_status_.size() >= push_sparse_wait_times) {
      for (auto& t : push_sparse_status_) {
        t.wait();
      }
      push_sparse_status_.resize(0);
    }

    if (tmp_push_sparse_wait_times == -1) {
      push_sparse_status_.resize(0);
    }

H
heqiaozhi 已提交
437 438 439 440
    for (size_t i = 0; i < param_.program_config(0).push_dense_table_id_size();
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).push_dense_table_id(i));
441 442
      pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
    }
443

444 445 446 447 448 449 450
    thread_scope_->DropKids();
    ++batch_cnt;
  }
}

}  // end namespace framework
}  // end namespace paddle