trainer.py 22.0 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
17

Y
Yu Yang 已提交
18
import core
19

Y
Yu Yang 已提交
20
import data_feeder
21 22
import executor
import framework
J
Jeff Wang 已提交
23
import io
Y
Yu Yang 已提交
24 25
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
26
import parallel_executor
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29
__all__ = [
30 31
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
32 33 34
]


Y
Yu Yang 已提交
35
class BeginEpochEvent(object):
Y
yuyang18 已提交
36 37 38 39 40 41 42
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

Y
Yu Yang 已提交
43 44 45 46 47
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
Y
yuyang18 已提交
48 49 50 51 52 53 54
    """
    The end of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

Y
Yu Yang 已提交
55 56
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
57

Y
Yu Yang 已提交
58 59

class BeginStepEvent(object):
Y
yuyang18 已提交
60 61 62 63 64 65 66 67
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
    """

Y
Yu Yang 已提交
68 69 70
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
71
        self.fetch_metrics = True
Y
yuyang18 已提交
72 73 74 75
        """
        If fetch_metrics is true, the metrics will be fetched at the 
        EndStepEvent. Default is True.
        """
Y
Yu Yang 已提交
76 77 78


class EndStepEvent(object):
Y
yuyang18 已提交
79 80 81 82 83 84 85
    """
    The end of a training step.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
        metrics(list): A list of fetched tensor. The order of this list is same
Y
yuyang18 已提交
86
            as the :code:`train_func` returns.
Y
yuyang18 已提交
87 88
    """

Y
yuyang18 已提交
89
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
90 91
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
92
        self.metrics = metrics
H
Helin Wang 已提交
93 94


95
class CheckpointConfig(object):
Y
yuyang18 已提交
96 97 98 99 100 101
    """
    Parameter object for :code:`fluid.io.save_checkpoint` and
    :code:`fluid.Trainer`. Used to configuration how to save checkpoint.

    Args:
        checkpoint_dir(str): Directory path to save check point. Default is the
Y
yuyang18 已提交
102
            current directory.
Y
yuyang18 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116

        max_num_checkpoints(int): The max number of local check points.
        epoch_interval(int): Every number of epoch to save check point.
        step_interval(int): Every number of step to save check point.

    Examples:
        >>> config = fluid.CheckpointConfig("./checkpoints")
        >>> trainer = fluid.Trainer(train_func=train_program,
        >>>                         place=place,
        >>>                         optimizer_func=optimizer_func,
        >>>                         checkpoint_config=config)
        >>> trainer.train(...)
    """

117 118 119
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
T
tangwei12 已提交
120 121
                 epoch_interval=1,
                 step_interval=10):
122 123
        if checkpoint_dir is None:
            self.checkpoint_dir = os.getcwd()
T
tangwei12 已提交
124 125 126
        else:
            self.checkpoint_dir = checkpoint_dir

127
        self.max_num_checkpoints = max_num_checkpoints
T
tangwei12 已提交
128 129 130 131 132 133 134 135 136 137

        if epoch_interval < 1:
            self.epoch_interval = 1
        else:
            self.epoch_interval = epoch_interval

        if step_interval < 1:
            self.step_interval = 10
        else:
            self.step_interval = step_interval
138

139 140
        self.epoch_id = 0
        self.step_id = 0
T
tangwei12 已提交
141 142
        self.load_serial = None
        self.is_pserver = False
T
tangwei12 已提交
143

144

Q
Qiao Longfei 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
171
class Trainer(object):
Y
Yu Yang 已提交
172
    """
Y
yuyang18 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
    simple neural network easily.

    This API takes a :code:`train_func`. A :code:`train_func` is a function that
    return loss as it first return value. The reset value can be fetched by
    EndStepEvent.metrics

    This API also takes a :code:`optimizer_func` that will return an optimizer
    instance.

    For example, to train a MLP for MNIST dataset, the sample program is

    >>> import paddle.fluid as fluid
    >>>
    >>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
    >>>     hidden = image
    >>>     for layer_size in layer_sizes:
    >>>         hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
    >>>     return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
    >>>
    >>> def train_mnist_mlp():
    >>>     img = fluid.layers.data(name='image', shape=[784])
    >>>     label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    >>>     prediction = mlp(img)
    >>>     return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
    >>>
    >>> def optimizer():
    >>>     return fluid.optimizer.Adam()
    >>>
    >>> trainer = Trainer(train_func=train_mnist_mlp,
    >>>                   optimizer_func=optimizer,
    >>>                   place=fluid.CUDAPlace(0),
    >>>                   parallel=True)
    >>>
    >>> def train_callback(event):
    >>>     if isinstance(event, fluid.EndStepEvent):
    >>>         print "Epoch ID", event.epoch, "Step ID",\
    >>>             event.step, "AvgLoss", event.metrics[0]
    >>>     elif isinstance(event, fluid.EndEpochEvent):
    >>>         trainer.save_params("./model_{0}".format(event.epoch))
    >>>
    >>> trainer.train(num_epochs=100, event_handler=train_callback)

    For more example, please see :ref:`api_guide_high_level_api`.

Y
Yu Yang 已提交
218 219

    Args:
Y
yuyang18 已提交
220 221
        train_func(callable): A function which will return loss. The loss must be
            a scalar tensor.
222
        optimizer_func(callable): A function that returns an Optimizer object.
Y
yuyang18 已提交
223 224 225 226 227 228
        place(CUDAPlace|CPUPlace): The device place of this trainer. If
            :code:`parallel=True,` all CUDA Places will be used if :code:`place`
            is a :code:`CUDAPlace`.
        parallel(bool): True if use multiple devices.
        checkpoint_config(CheckpointConfig): Configuration about how to save
            checkpoints.
Y
Yu Yang 已提交
229 230
    """

Q
Qiao Longfei 已提交
231 232
    def __init__(self,
                 train_func,
233
                 optimizer_func,
T
tangwei12 已提交
234
                 param_path=None,
Y
yuyang18 已提交
235
                 place=None,
236 237
                 parallel=False,
                 checkpoint_config=None):
238
        self.__stop = False
Y
yuyang18 已提交
239
        self.parallel = parallel
Q
Qiao Longfei 已提交
240

241 242
        # config for checkpoint
        # only chief worker will save variables
T
tangwei12 已提交
243
        self.trainer_id = 0
T
tangwei12 已提交
244 245 246
        self.checkpoint_cfg = checkpoint_config
        if self.checkpoint_cfg:
            assert isinstance(self.checkpoint_cfg, CheckpointConfig)
T
tangwei12 已提交
247
            serial = io.get_latest_checkpoint_serial(
T
tangwei12 已提交
248 249
                self.checkpoint_cfg.checkpoint_dir)
            self.checkpoint_cfg.load_serial = serial if serial >= 0 else None
250

H
Helin Wang 已提交
251
        self.scope = core.Scope()
Y
Yu Yang 已提交
252

Y
yuyang18 已提交
253 254 255 256
        # 1. we need to generate a framework.Program by calling
        # program_func. Reference: fluid.program_guard in
        # test_word2vec.py

Y
Yu Yang 已提交
257 258 259 260
        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
261
            program_func_outs = train_func()
Y
yuyang18 已提交
262
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
263
                program_func_outs, list) else [program_func_outs]
264
            self.test_program = self.train_program.clone(for_test=True)
265

266
            # The first element of program_func_outs is loss.
267 268 269
            loss = self.train_func_outputs[0]

            optimizer = optimizer_func()
Y
Yu Yang 已提交
270 271 272
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
273
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
274

Q
Qiao Longfei 已提交
275
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
276

Q
Qiao Longfei 已提交
277
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
278

H
Helin Wang 已提交
279 280
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
281
        # Run startup program
282 283 284
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
285

T
tangwei12 已提交
286
        if self.checkpoint_cfg and self.checkpoint_cfg.load_serial:
T
bug fix  
tangwei12 已提交
287 288
            with self._prog_and_scope_guard():
                exe = executor.Executor(place)
T
tangwei12 已提交
289 290
                io.load_checkpoint(exe, self.checkpoint_cfg.checkpoint_dir,
                                   self.checkpoint_cfg.load_serial,
T
bug fix  
tangwei12 已提交
291
                                   self.startup_program)
Y
Yu Yang 已提交
292

T
tangwei12 已提交
293
            if not self.checkpoint_cfg.is_pserver:
T
tangwei12 已提交
294
                epoch_id, step_id = io.load_trainer_args(
T
tangwei12 已提交
295 296 297 298 299
                    self.checkpoint_cfg.checkpoint_dir,
                    self.checkpoint_cfg.load_serial, self.trainer_id,
                    self._get_checkpoint_load_args())
                self.checkpoint_cfg.epoch_id = int(epoch_id)
                self.checkpoint_cfg.step_id = int(step_id)
T
tangwei12 已提交
300 301

        if param_path and os.path.isdir(param_path):
T
tangwei12 已提交
302
            # load params from param_path into scope
303
            io.load_persist_vars_without_grad(
T
tangwei12 已提交
304
                exe, dirname=param_path, program=self.startup_program)
T
tangwei12 已提交
305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
335
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
336 337 338 339
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
T
bug fix  
tangwei12 已提交
359
        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
T
tangwei12 已提交
360

361 362 363 364 365
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
T
bug fix  
tangwei12 已提交
366
                self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
367
            if training_role == "PSERVER":
T
tangwei12 已提交
368
                if self.checkpoint_cfg:
T
tangwei12 已提交
369 370
                    self.is_pserver = True

371 372 373 374 375 376 377 378 379
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
380

381 382 383 384 385 386
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
387
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
388
        """
Y
yuyang18 已提交
389
        Start the train loop to train the model.
Y
Yu Yang 已提交
390 391

        Args:
Y
yuyang18 已提交
392 393 394
            num_epochs(int): The number of epoch. An epoch will process all data in reader
            event_handler(callable): The event handler. A function with type (ev:Event)->void
            reader(callable): A reader creator object. See also
Y
yuyang18 已提交
395
                :ref:`api_guide_python_reader` .
Y
yuyang18 已提交
396
            feed_order(list): Feeding order of reader. None will following the defining
Y
Yu Yang 已提交
397 398 399
                order in program

        Returns:
Y
yuyang18 已提交
400
            None
Y
Yu Yang 已提交
401
        """
402 403 404 405 406 407
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
408 409 410 411 412 413
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
414

415
    def test(self, reader, feed_order):
F
fengjiayi 已提交
416 417 418 419
        """
        Test the model on given test data

        Args:
Y
yuyang18 已提交
420 421 422
            reader(callable): The reader that yields test data.
            feed_order(list): Feeding order of reader. None will following the
                defining order in program
F
fengjiayi 已提交
423 424
        """

Y
yuyang18 已提交
425 426
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
427

H
Helin Wang 已提交
428
    def save_params(self, param_path):
Y
yuyang18 已提交
429
        """
Y
yuyang18 已提交
430 431
        Save all parameters into :code:`param_path`.

Y
yuyang18 已提交
432
        Args:
Y
yuyang18 已提交
433
            param_path(str): The path to save parameters.
Y
yuyang18 已提交
434 435 436 437

        Returns:
            None
        """
438 439 440
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
464
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
465 466
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
467
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
468 469 470 471
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
T
tangwei12 已提交
472
        if self.checkpoint_cfg:
T
bug fix  
tangwei12 已提交
473 474
            epochs = [
                epoch_id for epoch_id in range(num_epochs)
T
tangwei12 已提交
475
                if epoch_id >= self.checkpoint_cfg.epoch_id
T
bug fix  
tangwei12 已提交
476 477 478 479
            ]
        else:
            epochs = [epoch_id for epoch_id in range(num_epochs)]

T
tangwei12 已提交
480
        for epoch_id in epochs:
Y
yuyang18 已提交
481 482
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
483
                if self.__stop:
T
bug fix  
tangwei12 已提交
484 485
                    if self.checkpoint_cfg:
                        self._clean_checkpoint()
486
                    return
T
tangwei12 已提交
487

T
tangwei12 已提交
488 489
                if self.checkpoint_cfg and self.checkpoint_cfg.load_serial \
                    and self.checkpoint_cfg.step_id >= step_id and self.checkpoint_cfg.epoch_id == epoch_id:
T
tangwei12 已提交
490 491
                    continue

Y
yuyang18 已提交
492 493 494 495 496 497 498 499 500 501
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
T
tangwei12 已提交
502

T
tangwei12 已提交
503 504
                if self.checkpoint_cfg:
                    self._save_checkpoint(epoch_id, step_id)
T
tangwei12 已提交
505
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
Y
yuyang18 已提交
506
            event_handler(EndEpochEvent(epoch_id))
T
tangwei12 已提交
507 508
        if self.checkpoint_cfg:
            self._clean_checkpoint()
F
fengjiayi 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
527 528 529 530 531 532 533 534
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
535
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
536 537 538 539 540 541 542 543 544 545 546

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

T
tangwei12 已提交
547
    def _clean_checkpoint(self):
T
tangwei12 已提交
548 549
        assert self.checkpoint_cfg
        io.clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir)
T
tangwei12 已提交
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    def _get_checkpoint_load_args(self):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
        """
        return ["epoch_id", "step_id"]

    def _get_checkpoint_save_args(self, epoch_id, step_id):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
        """
        trainer_args = {}
        trainer_args["epoch_id"] = epoch_id
        trainer_args["step_id"] = step_id
        return trainer_args

T
tangwei12 已提交
566
    def _save_checkpoint(self, epoch_id, step_id):
T
tangwei12 已提交
567
        assert self.checkpoint_cfg
T
tangwei12 已提交
568

T
tangwei12 已提交
569
        if epoch_id % self.checkpoint_cfg.epoch_interval == 0 and step_id % self.checkpoint_cfg.step_interval == 0:
T
tangwei12 已提交
570 571 572
            exe = executor.Executor(self.place)
            io.save_checkpoint(
                executor=exe,
T
tangwei12 已提交
573
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
T
tangwei12 已提交
574
                trainer_id=self.trainer_id,
575
                trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
T
tangwei12 已提交
576
                main_program=self.train_program,
T
tangwei12 已提交
577
                max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)
T
tangwei12 已提交
578

F
fengjiayi 已提交
579 580 581 582 583

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

584
    if isinstance(feed_order, list):
F
fengjiayi 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list