Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f97c5d4c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f97c5d4c
编写于
6月 17, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Trainer documentation
上级
08995ac9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
69 addition
and
9 deletion
+69
-9
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+69
-9
未找到文件。
python/paddle/fluid/trainer.py
浏览文件 @
f97c5d4c
...
...
@@ -151,11 +151,62 @@ def check_and_get_place(place):
class
Trainer
(
object
):
"""
A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
simple neural network easily.
This API takes a :code:`train_func`. A :code:`train_func` is a function that
return loss as it first return value. The reset value can be fetched by
EndStepEvent.metrics
This API also takes a :code:`optimizer_func` that will return an optimizer
instance.
For example, to train a MLP for MNIST dataset, the sample program is
>>> import paddle.fluid as fluid
>>>
>>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
>>> hidden = image
>>> for layer_size in layer_sizes:
>>> hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
>>> return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
>>>
>>> def train_mnist_mlp():
>>> img = fluid.layers.data(name='image', shape=[784])
>>> label = fluid.layers.data(name='label', shape=[1], dtype='int64')
>>> prediction = mlp(img)
>>> return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
>>>
>>> def optimizer():
>>> return fluid.optimizer.Adam()
>>>
>>> trainer = Trainer(train_func=train_mnist_mlp,
>>> optimizer_func=optimizer,
>>> place=fluid.CUDAPlace(0),
>>> parallel=True)
>>>
>>> def train_callback(event):
>>> if isinstance(event, fluid.EndStepEvent):
>>> print "Epoch ID", event.epoch, "Step ID",
\
>>> event.step, "AvgLoss", event.metrics[0]
>>> elif isinstance(event, fluid.EndEpochEvent):
>>> trainer.save_params("./model_{0}".format(event.epoch))
>>>
>>> trainer.train(num_epochs=100, event_handler=train_callback)
For more example, please see :ref:`api_guide_high_level_api`.
Args:
train_func(callable): A function which will return loss. The loss must be a scalar.
train_func(callable): A function which will return loss. The loss must be
a scalar tensor.
optimizer_func(callable): A function that returns an Optimizer object.
place: The device place of this trainer.
place(CUDAPlace|CPUPlace): The device place of this trainer. If
:code:`parallel=True,` all CUDA Places will be used if :code:`place`
is a :code:`CUDAPlace`.
parallel(bool): True if use multiple devices.
checkpoint_config(CheckpointConfig): Configuration about how to save
checkpoints.
"""
def
__init__
(
self
,
...
...
@@ -167,9 +218,6 @@ class Trainer(object):
checkpoint_config
=
None
):
self
.
__stop
=
False
self
.
parallel
=
parallel
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
# config for checkpoint
# only chief worker will save variables
...
...
@@ -183,6 +231,10 @@ class Trainer(object):
self
.
scope
=
core
.
Scope
()
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
self
.
startup_program
=
framework
.
Program
()
self
.
train_program
=
framework
.
Program
()
...
...
@@ -315,17 +367,18 @@ class Trainer(object):
def
train
(
self
,
num_epochs
,
event_handler
,
reader
=
None
,
feed_order
=
None
):
"""
T
rain the model.
Start the train loop to t
rain the model.
Args:
num_epochs: The number of epoch. An epoch will process all data in reader
event_handler: The event handler. A function with type (ev:Event)->void
reader:
reader: A reader creator object. See also
:ref:`api_guide_python_reader` .
feed_order: Feeding order of reader. None will following the defining
order in program
Returns:
None
"""
training_role
=
os
.
getenv
(
"PADDLE_TRAINING_ROLE"
,
""
)
if
training_role
==
"PSERVER"
:
...
...
@@ -354,7 +407,14 @@ class Trainer(object):
self
.
train_func_outputs
)
def
save_params
(
self
,
param_path
):
# reference: save_persistables in io.py
"""
Save all parameters into :code:`param_path`
Args:
param_path(str): The path to save parameters
Returns:
None
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录