infer.py 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
Guanghua Yu 已提交
15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

M
Manuel Garcia 已提交
19 20 21
import os
import sys

G
Guanghua Yu 已提交
22 23 24 25 26
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

27
import argparse
28
import time
29
import yaml
C
channings 已提交
30 31
import ast
from functools import reduce
32

33 34
import cv2
import numpy as np
35
import paddle
36
import paddle.fluid as fluid
G
Guanghua Yu 已提交
37
from preprocess import preprocess, Resize, Normalize, Permute, PadStride
38
from visualize import visualize_box_mask, lmk2out
39

40 41 42 43 44 45 46 47 48 49
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'SSD',
    'RetinaNet',
    'EfficientDet',
    'RCNN',
    'Face',
    'TTF',
    'FCOS',
G
Guanghua Yu 已提交
50
    'SOLOv2',
51 52
}

53

54
class Detector(object):
55 56
    """
    Args:
G
Guanghua Yu 已提交
57 58
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of __model__, __params__ and infer_cfg.yml
G
Guanghua Yu 已提交
59
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
60 61
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        threshold (float): threshold to reserve the result for output.
62
        enable_mkldnn (bool): whether use mkldnn with CPU.
63 64 65
    """

    def __init__(self,
G
Guanghua Yu 已提交
66 67
                 config,
                 model_dir,
G
Guanghua Yu 已提交
68
                 device='CPU',
G
Guanghua Yu 已提交
69
                 run_mode='fluid',
70
                 threshold=0.5,
71 72
                 trt_calib_mode=False,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
73 74 75
        self.config = config
        if self.config.use_python_inference:
            self.executor, self.program, self.fecth_targets = load_executor(
G
Guanghua Yu 已提交
76
                model_dir, device=device)
77
        else:
G
Guanghua Yu 已提交
78 79 80 81
            self.predictor = load_predictor(
                model_dir,
                run_mode=run_mode,
                min_subgraph_size=self.config.min_subgraph_size,
G
Guanghua Yu 已提交
82
                device=device,
83 84
                trt_calib_mode=trt_calib_mode,
                enable_mkldnn=enable_mkldnn)
85

G
Guanghua Yu 已提交
86 87 88
    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.config.preprocess_infos:
89 90
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
G
Guanghua Yu 已提交
91
            if op_type == 'Resize':
92 93
                new_op_info['arch'] = self.config.arch
            preprocess_ops.append(eval(op_type)(**new_op_info))
G
Guanghua Yu 已提交
94 95 96
        im, im_info = preprocess(im, preprocess_ops)
        inputs = create_inputs(im, im_info, self.config.arch)
        return inputs, im_info
97

98
    def postprocess(self, np_boxes, np_masks, np_lmk, im_info, threshold=0.5):
G
Guanghua Yu 已提交
99 100
        # postprocess output of predictor
        results = {}
101 102 103
        if np_lmk is not None:
            results['landmark'] = lmk2out(np_boxes, np_lmk, im_info, threshold)

G
Guanghua Yu 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        if self.config.arch in ['SSD', 'Face']:
            w, h = im_info['origin_shape']
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
        np_boxes = np_boxes[expect_boxes, :]
        for box in np_boxes:
            print('class_id:{:d}, confidence:{:.4f},'
                  'left_top:[{:.2f},{:.2f}],'
                  ' right_bottom:[{:.2f},{:.2f}]'.format(
                      int(box[0]), box[1], box[2], box[3], box[4], box[5]))
        results['boxes'] = np_boxes
        if np_masks is not None:
            np_masks = np_masks[expect_boxes, :, :, :]
            results['masks'] = np_masks
        return results
122

G
Guanghua Yu 已提交
123 124 125 126 127 128 129
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
        '''
130
        Args:
G
Guanghua Yu 已提交
131 132
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
133
        Returns:
G
Guanghua Yu 已提交
134 135 136 137 138 139
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape:[N, class_num, mask_resolution, mask_resolution]
        '''
        inputs, im_info = self.preprocess(image)
140
        np_boxes, np_masks, np_lmk = None, None, None
G
Guanghua Yu 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        if self.config.use_python_inference:
            for i in range(warmup):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t1 = time.time()
            for i in range(repeats):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
            np_boxes = np.array(outs[0])
            if self.config.mask_resolution is not None:
                np_masks = np.array(outs[1])
159
        else:
G
Guanghua Yu 已提交
160 161 162 163
            input_names = self.predictor.get_input_names()
            for i in range(len(input_names)):
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
164

G
Guanghua Yu 已提交
165 166 167 168 169 170 171 172 173
            for i in range(warmup):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
174

175 176 177 178 179 180 181 182 183 184 185
                if self.config.with_lmk is not None and self.config.with_lmk == True:
                    face_index = self.predictor.get_output_tensor(output_names[
                        1])
                    landmark = self.predictor.get_output_tensor(output_names[2])
                    prior_boxes = self.predictor.get_output_tensor(output_names[
                        3])
                    np_face_index = face_index.copy_to_cpu()
                    np_prior_boxes = prior_boxes.copy_to_cpu()
                    np_landmark = landmark.copy_to_cpu()
                    np_lmk = [np_face_index, np_landmark, np_prior_boxes]

G
Guanghua Yu 已提交
186 187 188 189 190 191 192 193 194 195
            t1 = time.time()
            for i in range(repeats):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
196 197 198 199 200 201 202 203 204 205 206

                if self.config.with_lmk is not None and self.config.with_lmk == True:
                    face_index = self.predictor.get_output_tensor(output_names[
                        1])
                    landmark = self.predictor.get_output_tensor(output_names[2])
                    prior_boxes = self.predictor.get_output_tensor(output_names[
                        3])
                    np_face_index = face_index.copy_to_cpu()
                    np_prior_boxes = prior_boxes.copy_to_cpu()
                    np_landmark = landmark.copy_to_cpu()
                    np_lmk = [np_face_index, np_landmark, np_prior_boxes]
G
Guanghua Yu 已提交
207 208 209
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
210

G
Guanghua Yu 已提交
211 212 213 214 215 216 217 218
        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
            if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
                print('[WARNNING] No object detected.')
                results = {'boxes': np.array([])}
            else:
                results = self.postprocess(
219
                    np_boxes, np_masks, np_lmk, im_info, threshold=threshold)
220

G
Guanghua Yu 已提交
221
        return results
222 223


G
Guanghua Yu 已提交
224 225 226 227
class DetectorSOLOv2(Detector):
    def __init__(self,
                 config,
                 model_dir,
G
Guanghua Yu 已提交
228
                 device='CPU',
G
Guanghua Yu 已提交
229
                 run_mode='fluid',
230
                 threshold=0.5,
231 232
                 trt_calib_mode=False,
                 enable_mkldnn=False):
G
Guanghua Yu 已提交
233 234 235
        super(DetectorSOLOv2, self).__init__(
            config=config,
            model_dir=model_dir,
G
Guanghua Yu 已提交
236
            device=device,
G
Guanghua Yu 已提交
237
            run_mode=run_mode,
238
            threshold=threshold,
239 240
            trt_calib_mode=trt_calib_mode,
            enable_mkldn=enable_mkldnn)
241

G
Guanghua Yu 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
        inputs, im_info = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        if self.config.use_python_inference:
            for i in range(warmup):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t1 = time.time()
            for i in range(repeats):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
            np_label, np_score, np_segms = np.array(outs[0]), np.array(outs[
                1]), np.array(outs[2])
        else:
            input_names = self.predictor.get_input_names()
            for i in range(len(input_names)):
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
            for i in range(warmup):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                np_label = self.predictor.get_output_tensor(output_names[
                    0]).copy_to_cpu()
                np_score = self.predictor.get_output_tensor(output_names[
                    1]).copy_to_cpu()
                np_segms = self.predictor.get_output_tensor(output_names[
                    2]).copy_to_cpu()
281

G
Guanghua Yu 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            t1 = time.time()
            for i in range(repeats):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                np_label = self.predictor.get_output_tensor(output_names[
                    0]).copy_to_cpu()
                np_score = self.predictor.get_output_tensor(output_names[
                    1]).copy_to_cpu()
                np_segms = self.predictor.get_output_tensor(output_names[
                    2]).copy_to_cpu()
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))

        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
            return dict(segm=np_segms, label=np_label, score=np_score)
        return results
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315


def create_inputs(im, im_info, model_arch='YOLO'):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = im
    origin_shape = list(im_info['origin_shape'])
    resize_shape = list(im_info['resize_shape'])
G
Guanghua Yu 已提交
316 317
    pad_shape = list(im_info['pad_shape']) if im_info[
        'pad_shape'] is not None else list(im_info['resize_shape'])
W
wangguanzhong 已提交
318
    scale_x, scale_y = im_info['scale']
319 320 321
    if 'YOLO' in model_arch:
        im_size = np.array([origin_shape]).astype('int32')
        inputs['im_size'] = im_size
322
    elif 'RetinaNet' in model_arch or 'EfficientDet' in model_arch:
W
wangguanzhong 已提交
323
        scale = scale_x
G
Guanghua Yu 已提交
324
        im_info = np.array([pad_shape + [scale]]).astype('float32')
325
        inputs['im_info'] = im_info
326
    elif ('RCNN' in model_arch) or ('FCOS' in model_arch):
W
wangguanzhong 已提交
327
        scale = scale_x
G
Guanghua Yu 已提交
328
        im_info = np.array([pad_shape + [scale]]).astype('float32')
329 330 331
        im_shape = np.array([origin_shape + [1.]]).astype('float32')
        inputs['im_info'] = im_info
        inputs['im_shape'] = im_shape
W
wangguanzhong 已提交
332 333 334
    elif 'TTF' in model_arch:
        scale_factor = np.array([scale_x, scale_y] * 2).astype('float32')
        inputs['scale_factor'] = scale_factor
G
Guanghua Yu 已提交
335 336 337 338
    elif 'SOLOv2' in model_arch:
        scale = scale_x
        im_info = np.array([resize_shape + [scale]]).astype('float32')
        inputs['im_info'] = im_info
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    return inputs


class Config():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.use_python_inference = yml_conf['use_python_inference']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.mask_resolution = None
        if 'mask_resolution' in yml_conf:
            self.mask_resolution = yml_conf['mask_resolution']
362 363 364
        self.with_lmk = None
        if 'with_lmk' in yml_conf:
            self.with_lmk = yml_conf['with_lmk']
C
channings 已提交
365
        self.print_config()
366 367 368 369 370 371

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
372
        for support_model in SUPPORT_MODELS:
373 374
            if support_model in yml_conf['arch']:
                return True
W
wangguanzhong 已提交
375
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
376
            'arch'], SUPPORT_MODELS))
377

C
channings 已提交
378 379 380
    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
381
        print('%s: %s' % ('Use Paddle Executor', self.use_python_inference))
C
channings 已提交
382 383 384 385 386
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')

387 388 389 390

def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
391
                   device='CPU',
392
                   min_subgraph_size=3,
393 394
                   trt_calib_mode=False,
                   enable_mkldnn=False):
395
    """set AnalysisConfig, generate AnalysisPredictor
396 397
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
398
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
399 400
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
401
        enable_mkldnn (bool): Whether use mkldnn with CPU, default is False
402 403 404
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
405
        ValueError: predict by TensorRT need device == GPU.
406
    """
G
Guanghua Yu 已提交
407
    if device != 'GPU' and not run_mode == 'fluid':
408
        raise ValueError(
G
Guanghua Yu 已提交
409 410
            "Predict by TensorRT mode: {}, expect device==GPU, but device == {}"
            .format(run_mode, device))
411
    precision_map = {
C
channings 已提交
412
        'trt_int8': fluid.core.AnalysisConfig.Precision.Int8,
413 414 415 416 417 418
        'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
        'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
    }
    config = fluid.core.AnalysisConfig(
        os.path.join(model_dir, '__model__'),
        os.path.join(model_dir, '__params__'))
G
Guanghua Yu 已提交
419
    if device == 'GPU':
420 421 422 423
        # initial GPU memory(M), device ID
        config.enable_use_gpu(100, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
424
    elif device == 'XPU':
425
        config.enable_lite_engine()
G
Guanghua Yu 已提交
426
        config.enable_xpu(10 * 1024 * 1024)
427 428
    else:
        config.disable_gpu()
429 430 431 432
        if enable_mkldnn:
            config.set_mkldnn_cache_capacity(0)
            config.enable_mkldnn()
            config.pass_builder().append_pass("interpolate_mkldnn_pass")
433 434
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
435
            workspace_size=1 << 10,
436 437 438 439
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
440
            use_calib_mode=trt_calib_mode)
441 442 443 444

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
445 446
    if (not enable_mkldnn):
        config.enable_memory_optim()
447
    # disable feed, fetch OP, needed by zero_copy_run
448 449 450 451 452
    config.switch_use_feed_fetch_ops(False)
    predictor = fluid.core.create_paddle_predictor(config)
    return predictor


G
Guanghua Yu 已提交
453 454
def load_executor(model_dir, device='CPU'):
    if device == 'GPU':
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    program, feed_names, fetch_targets = fluid.io.load_inference_model(
        dirname=model_dir,
        executor=exe,
        model_filename='__model__',
        params_filename='__params__')
    return exe, program, fetch_targets


def visualize(image_file,
              results,
              labels,
              mask_resolution=14,
G
Guanghua Yu 已提交
471 472
              output_dir='output/',
              threshold=0.5):
473 474
    # visualize the predict result
    im = visualize_box_mask(
G
Guanghua Yu 已提交
475 476 477 478 479
        image_file,
        results,
        labels,
        mask_resolution=mask_resolution,
        threshold=threshold)
480 481 482 483 484 485 486 487
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


G
Guanghua Yu 已提交
488 489 490 491 492
def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')
493 494


G
Guanghua Yu 已提交
495
def predict_image(detector):
C
channings 已提交
496 497
    if FLAGS.run_benchmark:
        detector.predict(
K
Kaipeng Deng 已提交
498 499 500 501 502
            FLAGS.image_file,
            FLAGS.threshold,
            warmup=100,
            repeats=100,
            run_benchmark=True)
C
channings 已提交
503 504 505 506 507 508 509
    else:
        results = detector.predict(FLAGS.image_file, FLAGS.threshold)
        visualize(
            FLAGS.image_file,
            results,
            detector.config.labels,
            mask_resolution=detector.config.mask_resolution,
G
Guanghua Yu 已提交
510 511
            output_dir=FLAGS.output_dir,
            threshold=FLAGS.threshold)
512 513


G
Guanghua Yu 已提交
514
def predict_video(detector, camera_id):
C
channings 已提交
515 516 517 518 519 520
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
521 522 523
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
M
Manuel Garcia 已提交
524
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
525
    if not os.path.exists(FLAGS.output_dir):
526
        os.makedirs(FLAGS.output_dir)
527 528 529 530 531 532 533 534 535 536 537 538 539 540
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.config.labels,
541 542
            mask_resolution=detector.config.mask_resolution,
            threshold=FLAGS.threshold)
543 544
        im = np.array(im)
        writer.write(im)
C
channings 已提交
545 546 547 548
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
549 550 551
    writer.release()


G
Guanghua Yu 已提交
552 553 554
def main():
    config = Config(FLAGS.model_dir)
    detector = Detector(
555 556
        config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
557
        device=FLAGS.device,
558
        run_mode=FLAGS.run_mode,
559 560
        trt_calib_mode=FLAGS.trt_calib_mode,
        enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
561 562 563 564
    if config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            config,
            FLAGS.model_dir,
G
Guanghua Yu 已提交
565
            device=FLAGS.device,
566
            run_mode=FLAGS.run_mode,
567 568
            trt_calib_mode=FLAGS.trt_calib_mode,
            enable_mkldnn=FLAGS.enable_mkldnn)
G
Guanghua Yu 已提交
569 570 571 572 573 574
    # predict from image
    if FLAGS.image_file != '':
        predict_image(detector)
    # predict from video file or camera video stream
    if FLAGS.video_file != '' or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
C
channings 已提交
575 576


577
if __name__ == '__main__':
578 579 580 581
    try:
        paddle.enable_static()
    except:
        pass
582 583 584 585 586 587
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'__model__', '__params__', "
588
              "'infer_cfg.yml', created by tools/export_model.py."),
589 590 591 592 593
        required=True)
    parser.add_argument(
        "--image_file", type=str, default='', help="Path of image file.")
    parser.add_argument(
        "--video_file", type=str, default='', help="Path of video file.")
C
channings 已提交
594 595 596 597 598
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
599 600 601 602
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
603
        help="mode of running(fluid/trt_fp32/trt_fp16/trt_int8)")
G
Guanghua Yu 已提交
604 605 606 607 608 609
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
610
    parser.add_argument(
C
channings 已提交
611 612 613
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
G
Guanghua Yu 已提交
614 615
        help="Deprecated, please use `--device` to set the device you want to run."
    )
C
channings 已提交
616 617 618 619 620
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
621 622 623 624 625 626 627
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
628 629 630 631 632 633
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
634 635 636 637 638
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
639
    FLAGS = parser.parse_args()
C
channings 已提交
640
    print_arguments(FLAGS)
641 642
    if FLAGS.image_file != '' and FLAGS.video_file != '':
        assert "Cannot predict image and video at the same time"
G
Guanghua Yu 已提交
643 644 645 646
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
G
Guanghua Yu 已提交
647 648

    main()