Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ace2e5e1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ace2e5e1
编写于
5月 29, 2020
作者:
C
channings
提交者:
GitHub
5月 29, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
deploy add log & benchmark (#791)
* python deploy add log * deploy add log & benchmark * Update infer.py
上级
b4ea2699
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
89 addition
and
27 deletion
+89
-27
deploy/cpp/src/object_detector.cc
deploy/cpp/src/object_detector.cc
+6
-1
deploy/python/README.md
deploy/python/README.md
+1
-0
deploy/python/infer.py
deploy/python/infer.py
+82
-26
未找到文件。
deploy/cpp/src/object_detector.cc
浏览文件 @
ace2e5e1
...
...
@@ -182,7 +182,12 @@ void ObjectDetector::Predict(const cv::Mat& im,
// Calculate output length
int
output_size
=
1
;
for
(
int
j
=
0
;
j
<
output_shape
.
size
();
++
j
)
{
output_size
*=
output_shape
[
j
];
output_size
*=
output_shape
[
j
];
}
if
(
output_size
<
6
)
{
std
::
cerr
<<
"[WARNING] No object detected."
<<
std
::
endl
;
return
true
;
}
output_data_
.
resize
(
output_size
);
out_tensor
->
copy_to_cpu
(
output_data_
.
data
());
...
...
deploy/python/README.md
浏览文件 @
ace2e5e1
...
...
@@ -48,6 +48,7 @@ python deploy/python/infer.py --model_dir=/path/to/models --image_file=/path/to/
| --run_mode |No|使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --threshold |No|预测得分的阈值,默认为0.5|
| --output_dir |No|可视化结果保存的根目录,默认为output/|
| --run_benchmark |No|是否运行benchmark,同时需指定--image_file|
说明:
...
...
deploy/python/infer.py
浏览文件 @
ace2e5e1
...
...
@@ -16,6 +16,8 @@ import os
import
argparse
import
time
import
yaml
import
ast
from
functools
import
reduce
from
PIL
import
Image
import
cv2
...
...
@@ -286,6 +288,7 @@ class Config():
self
.
mask_resolution
=
None
if
'mask_resolution'
in
yml_conf
:
self
.
mask_resolution
=
yml_conf
[
'mask_resolution'
]
self
.
print_config
()
def
check_model
(
self
,
yml_conf
):
"""
...
...
@@ -299,6 +302,15 @@ class Config():
"Unsupported arch: {}, expect SSD, YOLO, RetinaNet, RCNN and Face"
.
format
(
yml_conf
[
'arch'
]))
def
print_config
(
self
):
print
(
'----------- Model Configuration -----------'
)
print
(
'%s: %s'
%
(
'Model Arch'
,
self
.
arch
))
print
(
'%s: %s'
%
(
'Use Padddle Executor'
,
self
.
use_python_inference
))
print
(
'%s: '
%
(
'Transform Order'
))
for
op_info
in
self
.
preprocess_infos
:
print
(
'--%s: %s'
%
(
'transform op'
,
op_info
[
'type'
]))
print
(
'--------------------------------------------'
)
def
load_predictor
(
model_dir
,
run_mode
=
'fluid'
,
...
...
@@ -322,6 +334,7 @@ def load_predictor(model_dir,
raise
ValueError
(
"TensorRT int8 mode is not supported now, "
"please use trt_fp32 or trt_fp16 instead."
)
precision_map
=
{
'trt_int8'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Int8
,
'trt_fp32'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Float32
,
'trt_fp16'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Half
}
...
...
@@ -450,7 +463,7 @@ class Detector():
results
[
'masks'
]
=
np_masks
return
results
def
predict
(
self
,
image
,
threshold
=
0.5
):
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
...
...
@@ -464,13 +477,19 @@ class Detector():
inputs
,
im_info
=
self
.
preprocess
(
image
)
np_boxes
,
np_masks
=
None
,
None
if
self
.
config
.
use_python_inference
:
for
i
in
range
(
warmup
):
outs
=
self
.
executor
.
run
(
self
.
program
,
feed
=
inputs
,
fetch_list
=
self
.
fecth_targets
,
return_numpy
=
False
)
t1
=
time
.
time
()
outs
=
self
.
executor
.
run
(
self
.
program
,
feed
=
inputs
,
fetch_list
=
self
.
fecth_targets
,
return_numpy
=
False
)
for
i
in
range
(
repeats
):
outs
=
self
.
executor
.
run
(
self
.
program
,
feed
=
inputs
,
fetch_list
=
self
.
fecth_targets
,
return_numpy
=
False
)
t2
=
time
.
time
()
ms
=
(
t2
-
t1
)
*
1000.0
ms
=
(
t2
-
t1
)
*
1000.0
/
repeats
print
(
"Inference: {} ms per batch image"
.
format
(
ms
))
np_boxes
=
np
.
array
(
outs
[
0
])
...
...
@@ -481,35 +500,55 @@ class Detector():
for
i
in
range
(
len
(
inputs
)):
input_tensor
=
self
.
predictor
.
get_input_tensor
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
t1
=
time
.
time
()
self
.
predictor
.
zero_copy_run
()
t2
=
time
.
time
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_tensor
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
config
.
mask_resolution
is
not
None
:
masks_tensor
=
self
.
predictor
.
get_output_tensor
(
output_names
[
1
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
for
i
in
range
(
warmup
):
self
.
predictor
.
zero_copy_run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_tensor
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
config
.
mask_resolution
is
not
None
:
masks_tensor
=
self
.
predictor
.
get_output_tensor
(
output_names
[
1
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
ms
=
(
t2
-
t1
)
*
1000.0
t1
=
time
.
time
()
for
i
in
range
(
repeats
):
self
.
predictor
.
zero_copy_run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_tensor
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
config
.
mask_resolution
is
not
None
:
masks_tensor
=
self
.
predictor
.
get_output_tensor
(
output_names
[
1
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
t2
=
time
.
time
()
ms
=
(
t2
-
t1
)
*
1000.0
/
repeats
print
(
"Inference: {} ms per batch image"
.
format
(
ms
))
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
im_info
,
threshold
=
threshold
)
if
reduce
(
lambda
x
,
y
:
x
*
y
,
np_boxes
.
shape
)
<
6
:
print
(
'[WARNNING] No object detected.'
)
results
=
{
'boxes'
:
np
.
array
([])}
else
:
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
im_info
,
threshold
=
threshold
)
return
results
def
predict_image
():
detector
=
Detector
(
FLAGS
.
model_dir
,
use_gpu
=
FLAGS
.
use_gpu
,
run_mode
=
FLAGS
.
run_mode
)
results
=
detector
.
predict
(
FLAGS
.
image_file
,
FLAGS
.
threshold
)
visualize
(
FLAGS
.
image_file
,
results
,
detector
.
config
.
labels
,
mask_resolution
=
detector
.
config
.
mask_resolution
,
output_dir
=
FLAGS
.
output_dir
)
if
FLAGS
.
run_benchmark
:
detector
.
predict
(
FLAGS
.
image_file
,
FLAGS
.
threshold
,
warmup
=
100
,
repeats
=
100
)
else
:
results
=
detector
.
predict
(
FLAGS
.
image_file
,
FLAGS
.
threshold
)
visualize
(
FLAGS
.
image_file
,
results
,
detector
.
config
.
labels
,
mask_resolution
=
detector
.
config
.
mask_resolution
,
output_dir
=
FLAGS
.
output_dir
)
def
predict_video
():
...
...
@@ -543,6 +582,13 @@ def predict_video():
writer
.
release
()
def
print_arguments
(
args
):
print
(
'----------- Running Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
items
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------'
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
...
...
@@ -562,7 +608,15 @@ if __name__ == '__main__':
default
=
'fluid'
,
help
=
"mode of running(fluid/trt_fp32/trt_fp16)"
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
False
,
help
=
"Whether to predict with GPU."
)
"--use_gpu"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether to predict with GPU."
)
parser
.
add_argument
(
"--run_benchmark"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether to predict a image_file repeatedly for benchmark"
)
parser
.
add_argument
(
"--threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold of score."
)
parser
.
add_argument
(
...
...
@@ -572,6 +626,8 @@ if __name__ == '__main__':
help
=
"Directory of output visualization files."
)
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
if
FLAGS
.
image_file
!=
''
and
FLAGS
.
video_file
!=
''
:
assert
"Cannot predict image and video at the same time"
if
FLAGS
.
image_file
!=
''
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录