math_op_patch.py 6.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yang Yu 已提交
17
from ..framework import Variable, unique_name
18
from .layer_function_generator import OpProtoHolder
19
from ..initializer import force_init_on_cpu
Y
Yang Yu 已提交
20 21 22


def monkey_patch_variable():
Y
Yang Yu 已提交
23
    def unique_tmp_name():
Y
Yu Yang 已提交
24
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
25 26 27 28 29 30 31 32 33 34

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

    def create_tensor(block, value, dtype, shape):
        value = float(value)
Y
Yang Yu 已提交
35
        tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
36 37 38 39
        var = block.create_var(name=tmp_name, shape=shape, dtype=dtype)
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
40 41 42 43 44 45
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
                'force_cpu': force_init_on_cpu()
            })
Y
Yang Yu 已提交
46 47
        return var

Y
Yang Yu 已提交
48 49 50
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
51 52 53
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
Y
Yang Yu 已提交
54
        tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
55
        var = ref_var.block.create_var(name=tmp_name, dtype=dtype)
56 57 58 59 60 61
        batch_dim = -1
        for i, d in enumerate(ref_var.shape):
            if d < 0:
                batch_dim = i
                break
        assert batch_dim != -1
Y
Yang Yu 已提交
62 63 64 65
        ref_var.block.append_op(
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
66 67 68 69 70 71
            attrs={
                'shape': ref_var.shape,
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
            })
Y
Yang Yu 已提交
72 73 74 75
        return var

    def astype(self, dtype):
        """
Y
Yang Yu 已提交
76
        Cast a variable to a specified data type.
Y
Yang Yu 已提交
77 78 79 80 81 82 83 84
        NOTE: The variable must be a Tensor
        Args:
            self(Variable): The source variable
            dtype: The target dtype

        Returns:
            Variable with new dtype
        """
Y
Yang Yu 已提交
85
        tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        out = self.block.create_var(name=tmp_name, dtype=dtype)
        self.block.append_op(
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
        return out

    def _elemwise_method_creator_(method_name, op_type, reverse=False):
        def __impl__(self, other_var):
            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
                            self.block,
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
                    # add fill_op to self.block
                    other_var = create_scalar(
                        self.block, value=other_var, dtype=lhs_dtype)

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

Y
Yang Yu 已提交
128
            tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
129
            out = self.block.create_var(name=tmp_name, dtype=lhs_dtype)
130

131 132 133 134 135 136 137 138
            axis = -1
            if other_var.shape[0] == -1:
                axis = 0
            assert len(self.shape) >= len(other_var.shape), (
                "The rank of the first argument of an binary operator cannot "
                "be smaller than the rank of its second argument: %s vs %s" %
                (len(self.shape), len(other_var.shape)))

Y
Yang Yu 已提交
139 140 141 142
            self.block.append_op(
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
143 144
                outputs={'Out': out},
                attrs={'axis': axis})
Y
Yang Yu 已提交
145 146 147 148 149 150 151 152
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
153
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

    # inject methods
    for method_name, op_type, reverse in (
        ("__add__", "elementwise_add", False),
            # a+b == b+a. Do not need to reverse explicitly
        ("__radd__", "elementwise_add", False),
        ("__sub__", "elementwise_sub", False),
        ("__rsub__", "elementwise_sub", True),
        ("__mul__", "elementwise_mul", False),
            # a*b == b*a. Do not need to reverse explicitly
        ("__rmul__", "elementwise_mul", False),
        ("__div__", "elementwise_div", False),
172
        ("__truediv__", "elementwise_div", False),
Q
Qiao Longfei 已提交
173
        ("__rdiv__", "elementwise_div", True),
174
        ("__rtruediv__", "elementwise_div", True),
Q
Qiao Longfei 已提交
175
        ("__pow__", "elementwise_pow", False),
176
        ("__rpow__", "elementwise_pow", True),
177 178
        ("__floordiv__", "elementwise_floordiv", False),
        ("__mod__", "elementwise_mod", False),
179 180
            # for logical compare
        ("__eq__", "equal", False),
Q
qiaolongfei 已提交
181
        ("__ne__", "not_equal", False),
Q
qiaolongfei 已提交
182
        ("__lt__", "less_than", False),
Q
qiaolongfei 已提交
183 184 185
        ("__le__", "less_equal", False),
        ("__gt__", "greater_than", False),
        ("__ge__", "greater_equal", False)):
Y
Yang Yu 已提交
186 187 188 189
        setattr(Variable, method_name,
                _elemwise_method_creator_(method_name, op_type, reverse))

    Variable.astype = astype