im2sequence_op.h 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

   Licensed under the Apache License, Version 2.0 (the "License");
   You may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
16
#include <string>
17
#include <vector>
Y
Yi Wang 已提交
18 19 20 21 22
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/math_function.h"
G
gongweibao 已提交
23 24 25 26

namespace paddle {
namespace operators {

W
wanghaoshuang 已提交
27 28 29
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Y
Yang Yang 已提交
30 31
inline int Im2SeqOutputSize(int input_size, int filter_size, int padding_0,
                            int padding_1, int stride) {
W
wanghaoshuang 已提交
32 33 34
  const int output_size =
      (input_size + padding_0 + padding_1 - filter_size) / stride + 1;
  return output_size;
G
gongweibao 已提交
35 36
}

W
wanghaoshuang 已提交
37
template <typename DeviceContext, typename T>
38
class Im2SequenceKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
39
 public:
G
gongweibao 已提交
40
  void Compute(const framework::ExecutionContext& ctx) const override {
G
gongweibao 已提交
41
    const Tensor* in = ctx.Input<Tensor>("X");
W
wanghaoshuang 已提交
42
    LoDTensor* out = ctx.Output<LoDTensor>("Out");
G
gongweibao 已提交
43
    auto in_dim = in->dims();
W
wanghaoshuang 已提交
44 45
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
gongweibao 已提交
46 47
    int img_height = in_dim[2];
    int img_width = in_dim[3];
W
wanghaoshuang 已提交
48 49 50
    auto kernels = ctx.Attr<std::vector<int>>("kernels");
    auto strides = ctx.Attr<std::vector<int>>("strides");
    auto paddings = ctx.Attr<std::vector<int>>("paddings");
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    if (ctx.HasInput("Y") && batch_size > 1) {
      const Tensor* imgrealsize = ctx.Input<Tensor>("Y");
      auto out_stride = ctx.Attr<std::vector<int>>("out_stride");
      Tensor cpu_shape_tensor;
      TensorCopySync(*imgrealsize, platform::CPUPlace(), &cpu_shape_tensor);
      std::vector<int> imgreal_h;
      std::vector<int> imgreal_w;
      std::vector<int> output_height;
      std::vector<int> output_width;
      int result = 0;
      for (int i = 0; i < batch_size; i++) {
        int tmp_real_h = static_cast<int>((cpu_shape_tensor.data<T>())[2 * i]);
        int tmp_real_w =
            static_cast<int>((cpu_shape_tensor.data<T>())[2 * i + 1]);
        if (tmp_real_h % out_stride[0] == 0) {
          tmp_real_h = tmp_real_h / out_stride[0];
        } else {
          tmp_real_h = tmp_real_h / out_stride[0] + 1;
        }
        if (tmp_real_w % out_stride[1] == 0) {
          tmp_real_w = tmp_real_w / out_stride[1];
        } else {
          tmp_real_w = tmp_real_w / out_stride[1] + 1;
        }
        imgreal_h.push_back(tmp_real_h);
        imgreal_w.push_back(tmp_real_w);
        output_height.push_back(Im2SeqOutputSize(
            imgreal_h[i], kernels[0], paddings[0], paddings[2], strides[0]));
        output_width.push_back(Im2SeqOutputSize(
            imgreal_w[i], kernels[1], paddings[1], paddings[3], strides[1]));
        result += output_height[i] * output_width[i];
      }

      out->mutable_data<T>({result, img_channels * kernels[0] * kernels[1]},
                           ctx.GetPlace());

      const std::vector<int> dilations({1, 1});
      int offset_out = 0;
      for (int i = 0; i < batch_size; i++) {
        const Tensor src =
            in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
        Tensor dst = out->Slice(offset_out,
                                offset_out + output_height[i] * output_width[i])
                         .Resize({output_height[i], output_width[i],
                                  img_channels, kernels[0], kernels[1]});
        offset_out += output_height[i] * output_width[i];

        math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
        auto& dev_ctx = ctx.template device_context<DeviceContext>();
        f(dev_ctx, src, dilations, strides, paddings, &dst);
      }
      framework::LoD lod(1);
      lod[0].reserve(batch_size + 1);
      int offset = 0;
      lod[0].push_back(offset);
      for (int i = 0; i < batch_size; ++i) {
        offset += output_height[i] * output_width[i];
        lod[0].push_back(offset);
      }
      out->set_lod(lod);
    } else {
      int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
                                           paddings[2], strides[0]);
      int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
                                          paddings[3], strides[1]);
W
whs 已提交
116 117 118
      out->mutable_data<T>({batch_size * output_height * output_width,
                            img_channels * kernels[0] * kernels[1]},
                           ctx.GetPlace());
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      const std::vector<int> dilations({1, 1});
      auto out_dims = out->dims();
      out->Resize({batch_size, out->numel() / batch_size});
      for (int i = 0; i < batch_size; i++) {
        const Tensor src =
            in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
        Tensor dst =
            out->Slice(i, i + 1).Resize({output_height, output_width,
                                         img_channels, kernels[0], kernels[1]});

        math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
        auto& dev_ctx = ctx.template device_context<DeviceContext>();
        f(dev_ctx, src, dilations, strides, paddings, &dst);
      }
      out->Resize(out_dims);
      framework::LoD lod(1);
      lod[0].reserve(batch_size + 1);
      int offset = 0;
W
wanghaoshuang 已提交
137
      lod[0].push_back(offset);
138 139 140 141 142
      for (int i = 0; i < batch_size; ++i) {
        offset += output_height * output_width;
        lod[0].push_back(offset);
      }
      out->set_lod(lod);
W
wanghaoshuang 已提交
143
    }
G
gongweibao 已提交
144 145 146
  }
};

W
wanghaoshuang 已提交
147
template <typename DeviceContext, typename T>
148
class Im2SequenceGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
149 150
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
G
add gpu  
gongweibao 已提交
151
    auto* in = ctx.Input<Tensor>("X");
W
wanghaoshuang 已提交
152 153
    Tensor* d_out =
        const_cast<Tensor*>(ctx.Input<Tensor>(framework::GradVarName("Out")));
W
wanghaoshuang 已提交
154
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
G
gongweibao 已提交
155 156 157
    d_x->mutable_data<T>(ctx.GetPlace());

    auto x_v = framework::EigenVector<T>::Flatten(*d_x);
W
wanghaoshuang 已提交
158 159
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    x_v.device(place) = x_v.constant(0.0);
G
add gpu  
gongweibao 已提交
160 161

    auto in_dim = in->dims();
W
wanghaoshuang 已提交
162 163
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
add gpu  
gongweibao 已提交
164 165 166
    int img_height = in_dim[2];
    int img_width = in_dim[3];

W
wanghaoshuang 已提交
167 168 169
    auto kernels = ctx.Attr<std::vector<int>>("kernels");
    auto strides = ctx.Attr<std::vector<int>>("strides");
    auto paddings = ctx.Attr<std::vector<int>>("paddings");
Y
Yang Yang 已提交
170 171 172 173
    int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
                                         paddings[2], strides[0]);
    int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
                                        paddings[3], strides[1]);
W
wanghaoshuang 已提交
174 175 176 177 178 179 180 181 182

    const std::vector<int> dilations({1, 1});

    auto d_out_dims = d_out->dims();
    d_out->Resize({batch_size, d_out->numel() / batch_size});
    for (int i = 0; i < batch_size; i++) {
      Tensor dst =
          d_x->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
      const Tensor src = d_out->Slice(i, i + 1).Resize(
W
wanghaoshuang 已提交
183
          {output_height, output_width, img_channels, kernels[0], kernels[1]});
W
wanghaoshuang 已提交
184 185 186
      math::Col2ImFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      f(dev_ctx, src, dilations, strides, paddings, &dst);
G
add gpu  
gongweibao 已提交
187
    }
W
wanghaoshuang 已提交
188
    d_out->Resize(d_out_dims);
G
gongweibao 已提交
189 190 191 192 193
  }
};

}  // namespace operators
}  // namespace paddle