Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
32db8db5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
32db8db5
编写于
10月 17, 2017
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bugs
上级
45f16c90
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
120 addition
and
74 deletion
+120
-74
paddle/operators/block_expand_op.cc
paddle/operators/block_expand_op.cc
+7
-2
paddle/operators/block_expand_op.h
paddle/operators/block_expand_op.h
+8
-1
python/paddle/v2/framework/tests/test_block_expand_op.py
python/paddle/v2/framework/tests/test_block_expand_op.py
+105
-71
未找到文件。
paddle/operators/block_expand_op.cc
浏览文件 @
32db8db5
...
...
@@ -23,6 +23,7 @@ class BlockExpandOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
printf
(
"op infershape
\n
"
);
using
namespace
framework
;
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input of BlockExpandOp should not be null."
);
...
...
@@ -33,6 +34,7 @@ class BlockExpandOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
in_dim
.
size
(),
4
,
"Input format must be NCHW."
);
PADDLE_ENFORCE_GE
(
in_dim
[
0
],
1
,
"Input batchsize must >= 1."
);
printf
(
"op infershape2
\n
"
);
int
block_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockHeight"
);
int
block_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockWidth"
);
int
stride_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"strideHeight"
);
...
...
@@ -42,8 +44,8 @@ class BlockExpandOp : public framework::OperatorWithKernel {
int
N
=
in_dim
[
0
];
int
C
=
in_dim
[
1
];
int
img_height
=
in_dim
[
3
];
int
img_width
=
in_dim
[
4
];
int
img_height
=
in_dim
[
2
];
int
img_width
=
in_dim
[
3
];
int
output_height
=
0
;
int
output_width
=
0
;
...
...
@@ -58,6 +60,8 @@ class BlockExpandOp : public framework::OperatorWithKernel {
// reshape into [seqLength, stepSize], where seqLength is equal
// output_height * output_width, stepSize is equal
// input_channels * blockHeight * blockWidth
printf
(
"N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d
\n
"
,
N
,
output_height
,
output_width
,
C
,
block_height
,
block_width
);
ctx
->
SetOutputDim
(
"Out"
,
{
N
,
output_height
,
output_width
,
C
,
block_height
,
block_width
});
...
...
@@ -77,6 +81,7 @@ class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker {
H: height
W: width
)DOC"
);
printf
(
"opmakeer
\n
"
);
AddOutput
(
"Out"
,
"(LodTensor)The output data of block_expand op,"
);
AddAttr
<
int
>
(
"blockHeight"
,
"(int)height of block."
);
AddAttr
<
int
>
(
"blockWidth"
,
"(int)width of block."
);
...
...
paddle/operators/block_expand_op.h
浏览文件 @
32db8db5
...
...
@@ -44,7 +44,7 @@ class BlockExpandKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
namespace
framework
;
const
Tensor
*
in
=
ctx
.
Input
<
Tensor
>
(
"
input
"
);
const
Tensor
*
in
=
ctx
.
Input
<
Tensor
>
(
"
X
"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -68,7 +68,11 @@ class BlockExpandKernel : public framework::OpKernel<T> {
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
printf
(
"N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d
\n
"
,
N
,
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
);
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
printf
(
"i:%d
\n
"
,
i
);
Tensor
src
=
in
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
dst
=
out
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
{
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
});
...
...
@@ -109,6 +113,9 @@ class BlockExpandGradKernel : public framework::OpKernel<T> {
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
printf
(
"N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d
\n
"
,
N
,
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
);
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
Tensor
dst
=
out_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
...
...
python/paddle/v2/framework/tests/test_block_expand_op.py
浏览文件 @
32db8db5
...
...
@@ -3,119 +3,153 @@ import numpy as np
from
op_test
import
OpTest
def
get_output_shape
(
attrs
,
X
):
img_height
=
X
.
shape
[
2
]
img_width
=
X
.
shpe
[
3
]
padding_height
=
attrs
[
'padding_height'
]
padding_width
=
attrs
[
'padding_width'
]
block_height
=
attrs
[
'block_height'
]
block_width
=
attrs
[
'block_width'
]
stride_height
=
attrs
[
'stride_height'
]
stride_width
=
attrs
[
'stride_width'
]
output_height
=
\
def
get_output_shape
(
attrs
,
x
):
imgHeight
=
x
.
shape
[
1
]
imgWidth
=
x
.
shape
[
2
]
paddingHeight
=
attrs
[
'paddingHeight'
]
paddingWidth
=
attrs
[
'paddingWidth'
]
blockHeight
=
attrs
[
'blockHeight'
]
blockWidth
=
attrs
[
'blockWidth'
]
strideHeight
=
attrs
[
'strideHeight'
]
strideWidth
=
attrs
[
'strideWidth'
]
outputHeight
=
\
1
+
\
(
img
_height
+
2
*
padding_height
-
block_height
+
stride_h
eight
-
1
)
/
\
stride
_h
eight
(
img
Height
+
2
*
paddingHeight
-
blockHeight
+
strideH
eight
-
1
)
/
\
stride
H
eight
output
_w
idth
=
\
output
W
idth
=
\
1
+
\
(
img
_width
+
2
*
padding_width
-
block_width
+
stride_w
idth
-
1
)
/
\
stride
_w
idth
(
img
Width
+
2
*
paddingWidth
-
blockWidth
+
strideW
idth
-
1
)
/
\
stride
W
idth
return
output
_height
,
output_w
idth
return
output
Height
,
outputW
idth
"""
im
g
: {CHW}
im: {CHW}
col:
{output
_height, output_w
idth, inputChannels, filterHeight, filterWidth}
{output
Height, outputW
idth, inputChannels, filterHeight, filterWidth}
"""
def
img2col
(
attrs
,
im
,
col
):
input_channels
=
im
.
shape
.
dims
[
0
]
input_height
=
im
.
shape
.
dims
[
1
]
input_width
=
im
.
shape
.
dims
[
2
]
filter_height
=
col
.
shape
.
dims
[
3
]
filter_width
=
col
.
shape
.
dims
[
4
]
output_height
=
col
.
shape
.
dims
[
0
]
output_width
=
col
.
shape
.
dims
[
1
]
def
im2col
(
attrs
,
im
,
col
):
input_channels
=
im
.
shape
[
0
]
inputHeight
=
im
.
shape
[
1
]
inputWidth
=
im
.
shape
[
2
]
outputHeight
=
col
.
shape
[
0
]
outputWidth
=
col
.
shape
[
1
]
filterHeight
=
col
.
shape
[
3
]
filterWidth
=
col
.
shape
[
4
]
for
col_row_idx
in
range
(
0
,
output_height
):
for
col_col_idx
in
range
(
0
,
output_width
):
strideHeight
=
attrs
[
'strideHeight'
]
strideWidth
=
attrs
[
'strideWidth'
]
paddingHeight
=
attrs
[
'paddingHeight'
]
paddingWidth
=
attrs
[
'paddingWidth'
]
for
col_row_idx
in
range
(
0
,
outputHeight
):
for
col_col_idx
in
range
(
0
,
outputWidth
):
for
channel
in
range
(
0
,
input_channels
):
for
filter_row_idx
in
range
(
0
,
filter_height
):
for
filter_col_idx
in
range
(
0
,
filter_width
):
im_row_offset
=
col_row_idx
*
stride_height
\
+
filter_row_idx
-
padding_height
im_col_offset
=
col_col_idx
*
stride_width
\
+
filter_col_idx
-
padding_width
if
(
im_row_offset
<
0
or
im_row_offset
>=
input_height
or
for
filter_row_idx
in
range
(
0
,
filterHeight
):
for
filter_col_idx
in
range
(
0
,
filterWidth
):
im_row_offset
=
col_row_idx
*
strideHeight
\
+
filter_row_idx
-
paddingHeight
im_col_offset
=
col_col_idx
*
strideWidth
\
+
filter_col_idx
-
paddingWidth
if
(
im_row_offset
<
0
or
im_row_offset
>=
inputHeight
or
im_col_offset
<
0
or
im_col_offset
>=
input
_w
idth
):
col
[
col_row_idx
][
col_col_idx
][
channel
][
im_col_offset
>=
input
W
idth
):
col
[
col_row_idx
][
col_col_idx
][
channel
][
\
filter_row_idx
][
filter_col_idx
]
=
0.0
else
:
im_offset
=
(
channel
*
input_height
+
im_row_offset
)
*
input_width
+
im_col_offset
col
[
col_row_idx
][
col_col_idx
][
channel
][
filter_row_idx
][
filter_col_idx
]
=
im
[
channel
][
im_offset
=
(
channel
*
inputHeight
+
im_row_offset
\
)
*
inputWidth
+
im_col_offset
col
[
col_row_idx
][
col_col_idx
][
channel
][
\
filter_row_idx
][
filter_col_idx
]
=
im
[
channel
][
\
im_row_offset
][
im_col_offset
]
"""
img: {CHW}
col:
{output
_height, output_w
idth, inputChannels, filterHeight, filterWidth}
{output
Height, outputW
idth, inputChannels, filterHeight, filterWidth}
"""
def
col2img
(
attrs
,
col
,
img
):
input_channels
=
im
.
shape
.
dims
[
0
]
input_height
=
im
.
shape
.
dims
[
1
]
input_width
=
im
.
shape
.
dims
[
2
]
filter_height
=
col
.
shape
.
dims
[
3
]
filter_width
=
col
.
shape
.
dims
[
4
]
output_height
=
col
.
shape
.
dims
[
0
]
output_width
=
col
.
shape
.
dims
[
1
]
for
col_row_idx
in
range
(
0
,
output_height
):
for
col_col_idx
in
range
(
0
,
output_width
):
input_channels
=
im
.
shape
[
0
]
inputHeight
=
im
.
shape
[
1
]
inputWidth
=
im
.
shape
[
2
]
outputHeight
=
col
.
shape
[
0
]
outputWidth
=
col
.
shape
[
1
]
filterHeight
=
col
.
shape
[
3
]
filterWidth
=
col
.
shape
[
4
]
strideHeight
=
attrs
[
'strideHeight'
]
strideWidth
=
attrs
[
'strideWidth'
]
paddingHeight
=
attrs
[
'paddingHeight'
]
paddingWidth
=
attrs
[
'paddingWidth'
]
for
col_row_idx
in
range
(
0
,
outputHeight
):
for
col_col_idx
in
range
(
0
,
outputWidth
):
for
channel
in
range
(
0
,
input_channels
):
for
filter_row_idx
in
range
(
0
,
filter
_h
eight
):
for
filter_col_idx
in
range
(
0
,
filter
_w
idth
):
for
filter_row_idx
in
range
(
0
,
filter
H
eight
):
for
filter_col_idx
in
range
(
0
,
filter
W
idth
):
im_row_offset
=
\
col_row_idx
*
stride
_height
+
filter_row_idx
-
padding_h
eight
col_row_idx
*
stride
Height
+
filter_row_idx
-
paddingH
eight
im_col_offset
=
\
col_col_idx
*
stride
_width
+
filter_col_idx
-
padding_w
idth
col_col_idx
*
stride
Width
+
filter_col_idx
-
paddingW
idth
if
(
im_row_offset
>=
0
and
im_row_offset
<
input
_h
eight
and
im_row_offset
<
input
H
eight
and
im_col_offset
>=
0
and
im_col_offset
<
input
_w
idth
):
im_col_offset
<
input
W
idth
):
im
[
channel
][
im_row_offset
][
im_col_offset
]
=
\
col
[
col_row_idx
][
col_col_idx
][
channel
][
filter_row_idx
][
filter_col_idx
]
class
TestBlockExpandMulOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"block_expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
9
,
9
]).
astype
(
"float64"
),
}
self
.
attrs
=
{
'block_height'
:
3
,
'block_width'
:
3
,
'stride_height'
:
2
,
'stride_width'
:
2
,
'padding_height'
:
3
,
'padding_width'
:
3
,
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
9
,
9
]).
astype
(
"float32"
)
attrs
=
{
'blockHeight'
:
3
,
'blockWidth'
:
3
,
'strideHeight'
:
2
,
'strideWidth'
:
2
,
'paddingHeight'
:
3
,
'paddingWidth'
:
3
,
}
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
outputHeight
,
outputWidth
=
get_output_shape
(
attrs
,
x
)
out
=
np
.
random
.
uniform
(
0.1
,
1
,
\
[
outputHeight
,
outputWidth
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
]]).
astype
(
"float32"
)
self
.
op_type
=
"block_expand"
self
.
inputs
=
{
'X'
:
x
.
reshape
(
1
,
3
,
9
,
9
)}
self
.
attrs
=
attrs
im2col
(
attrs
,
x
,
out
)
self
.
outputs
=
{
'Out'
:
out
.
reshape
(
1
,
outputHeight
,
outputWidth
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
])
}
#print out
def
test_check_output
(
self
):
self
.
check_output
()
print
1
"""
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
"""
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录