Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e82f1008
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e82f1008
编写于
1月 17, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Finish block expand op
1. Add lod to output 2. Fix im2col arguments list 3. Refine code and doc 4. Fix output shape
上级
25a3d2d7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
239 addition
and
222 deletion
+239
-222
paddle/operators/block_expand_op.cc
paddle/operators/block_expand_op.cc
+75
-44
paddle/operators/block_expand_op.h
paddle/operators/block_expand_op.h
+74
-66
python/paddle/v2/fluid/tests/test_block_expand_op.py
python/paddle/v2/fluid/tests/test_block_expand_op.py
+90
-112
未找到文件。
paddle/operators/block_expand_op.cc
浏览文件 @
e82f1008
...
...
@@ -32,37 +32,27 @@ class BlockExpandOp : public framework::OperatorWithKernel {
auto
in_dim
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
in_dim
.
size
(),
4
,
"Input(X) format must be 4D tensor, eg., NCHW."
);
PADDLE_ENFORCE_GE
(
in_dim
[
0
],
1
,
"Input batchsize must >= 1."
);
int
block_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"block
H
eight"
);
int
block_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"block
W
idth"
);
int
stride_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"stride
H
eight"
);
int
stride_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"stride
W
idth"
);
int
padding_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"padding
H
eight"
);
int
padding_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"padding
W
idth"
);
int
block_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"block
_h
eight"
);
int
block_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"block
_w
idth"
);
int
stride_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"stride
_h
eight"
);
int
stride_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"stride
_w
idth"
);
int
padding_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"padding
_h
eight"
);
int
padding_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"padding
_w
idth"
);
int
N
=
in_dim
[
0
];
int
C
=
in_dim
[
1
];
int
batch_size
=
in_dim
[
0
];
int
img_channels
=
in_dim
[
1
];
int
img_height
=
in_dim
[
2
];
int
img_width
=
in_dim
[
3
];
int
output_height
=
0
;
int
output_width
=
0
;
int
output_height
=
get_output_size
(
img_height
,
block_height
,
stride_height
,
padding_height
);
int
output_width
=
get_output_size
(
img_width
,
block_width
,
stride_width
,
padding_width
);
get_blockexpand_output_shape
(
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
output_height
,
output_width
);
// The result of im2col is [output_height, output_width,
// inputChannels, filterHeight, filterWidth], and it is easy to
// reshape into [seqLength, stepSize], where seqLength is equal
// output_height * output_width, stepSize is equal
// input_channels * blockHeight * blockWidth
ctx
->
SetOutputDim
(
"Out"
,
{
N
,
output_height
,
output_width
,
C
,
block_height
,
block_width
});
// ctx->ShareLoD("X", /*->*/ "Out");
ctx
->
SetOutputDim
(
"Out"
,
{
batch_size
*
output_height
*
output_width
,
img_channels
*
block_height
*
block_width
});
// TODO(wanghaoshuang): cal lod in complie time
}
};
...
...
@@ -79,28 +69,69 @@ class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W: width
)DOC"
);
AddOutput
(
"Out"
,
"(LodTensor)The output data of block_expand op,"
);
AddAttr
<
int
>
(
"block
H
eight"
,
"(int)height of block."
);
AddAttr
<
int
>
(
"block
W
idth"
,
"(int)width of block."
);
AddAttr
<
int
>
(
"stride
H
eight"
,
"(int)height of stride."
);
AddAttr
<
int
>
(
"stride
W
idth"
,
"(int)width of stride."
);
AddAttr
<
int
>
(
"padding
H
eight"
,
"(int)height of padding."
);
AddAttr
<
int
>
(
"padding
W
idth"
,
"(int)width of padding."
);
AddAttr
<
int
>
(
"block
_h
eight"
,
"(int)height of block."
);
AddAttr
<
int
>
(
"block
_w
idth"
,
"(int)width of block."
);
AddAttr
<
int
>
(
"stride
_h
eight"
,
"(int)height of stride."
);
AddAttr
<
int
>
(
"stride
_w
idth"
,
"(int)width of stride."
);
AddAttr
<
int
>
(
"padding
_h
eight"
,
"(int)height of padding."
);
AddAttr
<
int
>
(
"padding
_w
idth"
,
"(int)width of padding."
);
AddComment
(
R"DOC(
Expand feature map to minibatch matrix.
- matirx height is: output_height * output_width
- matrix width is: blockHeight * blockWidth * channels
output_height =
1 + (2 * paddingHeight + img_height - blockHeight + strideHeight - 1) /
strideHeight;
output_width =
1 + (2 * paddingWidth + img_width - blockWidth + strideWidth - 1) /
strideWidth;
The expand method is the same with ExpandConvLayer, but saved the transposed
value. After expanding, The number of time steps are output_height * output_width
and the dimension of each time step is blockHeight * blockWidth * channels.
This layer can be used after convolution neural network, and before recurrent neural network.
- matrix width is: block_height * block_width * channels
output_height =
1 + (2 * padding_height + img_height - block_height + stride_height - 1) /
stride_height;
output_width =
1 + (2 * padding_width + img_width - block_width + stride_width - 1) /
stride_width;
After expanding, The number of time steps are output_height * output_width
and the dimension of each time step is block_height * block_width * channels.
This op can be used after convolution neural network, and before recurrent neural network.
Given:
x = [[[[ 6. 2. 1.]
[ 8. 3. 5.]
[ 0. 2. 6.]]
[[ 2. 4. 4.]
[ 6. 3. 0.]
[ 6. 4. 7.]]]
[[[ 6. 7. 1.]
[ 5. 7. 9.]
[ 2. 4. 8.]]
[[ 1. 2. 1.]
[ 1. 3. 5.]
[ 9. 0. 8.]]]]
x.dims = {2, 2, 3, 3}
And:
block_height = 2
block_width = 2
stride_height = 1
stride_width = 1
padding_height = 0
padding_width = 0
Then:
output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.]
[ 2. 1. 3. 5. 4. 4. 3. 0.]
[ 8. 3. 0. 2. 6. 3. 6. 4.]
[ 3. 5. 2. 6. 3. 0. 4. 7.]
[ 6. 7. 5. 7. 1. 2. 1. 3.]
[ 7. 1. 7. 9. 2. 1. 3. 5.]
[ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 9}
output.lod = [[0, 4, 8]]
)DOC"
);
}
};
...
...
paddle/operators/block_expand_op.h
浏览文件 @
e82f1008
...
...
@@ -23,20 +23,9 @@
namespace
paddle
{
namespace
operators
{
inline
void
get_blockexpand_output_shape
(
int
img_height
,
int
img_width
,
int
block_height
,
int
block_width
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
padding_width
,
int
&
outputHeight
,
int
&
outputWidth
)
{
outputHeight
=
1
+
(
img_height
+
2
*
padding_height
-
block_height
+
stride_height
-
1
)
/
stride_height
;
outputWidth
=
1
+
(
img_width
+
2
*
padding_width
-
block_width
+
stride_width
-
1
)
/
stride_width
;
inline
int
get_output_size
(
int
img_size
,
int
block_size
,
int
stride
,
int
padding
)
{
return
(
1
+
(
img_size
+
2
*
padding
-
block_size
+
stride
-
1
)
/
stride
);
}
template
<
typename
Place
,
typename
T
>
...
...
@@ -45,40 +34,54 @@ class BlockExpandKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
namespace
framework
;
const
Tensor
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
LoDTensor
*
out
=
ctx
.
Output
<
LoD
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_dim
=
in
->
dims
();
int
N
=
in_dim
[
0
];
int
C
=
in_dim
[
1
];
int
batch_size
=
in_dim
[
0
];
int
img_channels
=
in_dim
[
1
];
int
img_height
=
in_dim
[
2
];
int
img_width
=
in_dim
[
3
];
int
block_height
=
ctx
.
Attr
<
int
>
(
"blockHeight"
);
int
block_width
=
ctx
.
Attr
<
int
>
(
"blockWidth"
);
int
stride_height
=
ctx
.
Attr
<
int
>
(
"strideHeight"
);
int
stride_width
=
ctx
.
Attr
<
int
>
(
"strideWidth"
);
int
padding_height
=
ctx
.
Attr
<
int
>
(
"paddingHeight"
);
int
padding_width
=
ctx
.
Attr
<
int
>
(
"paddingWidth"
);
int
outputHeight
=
0
;
int
outputWidth
=
0
;
get_blockexpand_output_shape
(
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
std
::
vector
<
int
>
stride
({
stride_height
,
stride_width
});
std
::
vector
<
int
>
padding
({
padding_height
,
padding_width
});
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
Tensor
src
=
in
->
Slice
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
dst
=
out
->
Slice
(
i
,
i
+
1
).
Resize
(
{
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
});
int
block_height
=
ctx
.
Attr
<
int
>
(
"block_height"
);
int
block_width
=
ctx
.
Attr
<
int
>
(
"block_width"
);
int
stride_height
=
ctx
.
Attr
<
int
>
(
"stride_height"
);
int
stride_width
=
ctx
.
Attr
<
int
>
(
"stride_width"
);
int
padding_height
=
ctx
.
Attr
<
int
>
(
"padding_height"
);
int
padding_width
=
ctx
.
Attr
<
int
>
(
"padding_width"
);
int
output_height
=
get_output_size
(
img_height
,
block_height
,
stride_height
,
padding_height
);
int
output_width
=
get_output_size
(
img_width
,
block_width
,
stride_width
,
padding_width
);
const
std
::
vector
<
int
>
dilations
({
1
,
1
});
const
std
::
vector
<
int
>
strides
(
{
stride_height
,
stride_width
,
stride_height
,
stride_width
});
const
std
::
vector
<
int
>
paddings
(
{
padding_height
,
padding_width
,
padding_height
,
padding_width
});
auto
out_dims
=
out
->
dims
();
out
->
Resize
({
batch_size
,
out
->
numel
()
/
batch_size
});
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
const
Tensor
src
=
in
->
Slice
(
i
,
i
+
1
).
Resize
({
img_channels
,
img_height
,
img_width
});
Tensor
dst
=
out
->
Slice
(
i
,
i
+
1
).
Resize
({
output_height
,
output_width
,
img_channels
,
block_height
,
block_width
});
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kOCF
,
Place
,
T
>
f
;
f
(
ctx
.
device_context
(),
src
,
stride
,
padding
,
&
dst
);
f
(
ctx
.
device_context
(),
src
,
dilations
,
strides
,
paddings
,
&
dst
);
}
out
->
Resize
(
out_dims
);
// set lod information
// TODO(wanghaoshuang): Move this to InferShape
framework
::
LoD
lod
(
1
);
for
(
int
i
=
0
,
offset
=
0
;
i
<
batch_size
+
1
;
++
i
)
{
lod
[
0
].
push_back
(
offset
);
offset
+=
output_height
*
output_width
;
}
out
->
set_lod
(
lod
);
}
};
...
...
@@ -88,7 +91,8 @@ class BlockExpandGradKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
namespace
framework
;
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
d_out
=
const_cast
<
Tensor
*>
(
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
)));
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
GradVarName
(
"X"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -96,36 +100,40 @@ class BlockExpandGradKernel : public framework::OpKernel<T> {
x_v
.
device
(
ctx
.
GetEigenDevice
<
Place
>
())
=
x_v
.
constant
(
0.0
);
auto
in_dim
=
in
->
dims
();
int
N
=
in_dim
[
0
];
int
C
=
in_dim
[
1
];
int
batch_size
=
in_dim
[
0
];
int
img_channels
=
in_dim
[
1
];
int
img_height
=
in_dim
[
2
];
int
img_width
=
in_dim
[
3
];
int
block_height
=
ctx
.
Attr
<
int
>
(
"blockHeight"
);
int
block_width
=
ctx
.
Attr
<
int
>
(
"blockWidth"
);
int
stride_height
=
ctx
.
Attr
<
int
>
(
"strideHeight"
);
int
stride_width
=
ctx
.
Attr
<
int
>
(
"strideWidth"
);
int
padding_height
=
ctx
.
Attr
<
int
>
(
"paddingHeight"
);
int
padding_width
=
ctx
.
Attr
<
int
>
(
"paddingWidth"
);
int
outputHeight
=
0
;
int
outputWidth
=
0
;
get_blockexpand_output_shape
(
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
outputHeight
,
outputWidth
);
std
::
vector
<
int
>
stride
({
stride_height
,
stride_width
});
std
::
vector
<
int
>
padding
({
padding_height
,
padding_width
});
// std::vector<int> stride({stride_height, stride_width});
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
Tensor
dst
=
d_x
->
Slice
(
i
,
i
+
1
).
Resize
({
C
,
img_height
,
img_width
});
Tensor
src
=
d_out
->
Slice
(
i
,
i
+
1
).
Resize
(
{
outputHeight
,
outputWidth
,
C
,
block_height
,
block_width
});
int
block_height
=
ctx
.
Attr
<
int
>
(
"block_height"
);
int
block_width
=
ctx
.
Attr
<
int
>
(
"block_width"
);
int
stride_height
=
ctx
.
Attr
<
int
>
(
"stride_height"
);
int
stride_width
=
ctx
.
Attr
<
int
>
(
"stride_width"
);
int
padding_height
=
ctx
.
Attr
<
int
>
(
"padding_height"
);
int
padding_width
=
ctx
.
Attr
<
int
>
(
"padding_width"
);
int
output_height
=
get_output_size
(
img_height
,
block_height
,
stride_height
,
padding_height
);
int
output_width
=
get_output_size
(
img_width
,
block_width
,
stride_width
,
padding_width
);
const
std
::
vector
<
int
>
dilations
({
1
,
1
});
const
std
::
vector
<
int
>
strides
(
{
stride_height
,
stride_width
,
stride_height
,
stride_width
});
const
std
::
vector
<
int
>
paddings
(
{
padding_height
,
padding_width
,
padding_height
,
padding_width
});
auto
d_out_dims
=
d_out
->
dims
();
d_out
->
Resize
({
batch_size
,
d_out
->
numel
()
/
batch_size
});
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
dst
=
d_x
->
Slice
(
i
,
i
+
1
).
Resize
({
img_channels
,
img_height
,
img_width
});
const
Tensor
src
=
d_out
->
Slice
(
i
,
i
+
1
).
Resize
(
{
output_height
,
output_width
,
img_channels
,
block_height
,
block_width
});
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kOCF
,
Place
,
T
>
f
;
f
(
ctx
.
device_context
(),
dst
,
stride
,
padding
,
&
src
);
f
(
ctx
.
device_context
(),
src
,
dilations
,
strides
,
paddings
,
&
dst
);
}
d_out
->
Resize
(
d_out_dims
);
}
};
...
...
python/paddle/v2/fluid/tests/test_block_expand_op.py
浏览文件 @
e82f1008
...
...
@@ -4,20 +4,20 @@ from op_test import OpTest
def
get_output_shape
(
attrs
,
x
):
img_height
=
x
.
shape
[
1
]
img_width
=
x
.
shape
[
2
]
img_height
=
x
.
shape
[
2
]
img_width
=
x
.
shape
[
3
]
padding_height
=
attrs
[
'padding
H
eight'
]
padding_width
=
attrs
[
'padding
W
idth'
]
block_height
=
attrs
[
'block
H
eight'
]
block_width
=
attrs
[
'block
W
idth'
]
stride_height
=
attrs
[
'stride
H
eight'
]
stride_width
=
attrs
[
'stride
W
idth'
]
padding_height
=
attrs
[
'padding
_h
eight'
]
padding_width
=
attrs
[
'padding
_w
idth'
]
block_height
=
attrs
[
'block
_h
eight'
]
block_width
=
attrs
[
'block
_w
idth'
]
stride_height
=
attrs
[
'stride
_h
eight'
]
stride_width
=
attrs
[
'stride
_w
idth'
]
output_height
=
\
1
+
\
(
img_height
+
2
*
padding_height
-
block_height
+
stride_height
-
1
)
/
\
stride
H
eight
stride
_h
eight
output_width
=
\
1
+
\
...
...
@@ -42,10 +42,10 @@ def im2col(attrs, im, col):
filter_height
=
col
.
shape
[
3
]
filter_width
=
col
.
shape
[
4
]
stride_height
=
attrs
[
'stride
H
eight'
]
stride_width
=
attrs
[
'stride
W
idth'
]
padding_height
=
attrs
[
'padding
H
eight'
]
padding_width
=
attrs
[
'padding
W
idth'
]
stride_height
=
attrs
[
'stride
_h
eight'
]
stride_width
=
attrs
[
'stride
_w
idth'
]
padding_height
=
attrs
[
'padding
_h
eight'
]
padding_width
=
attrs
[
'padding
_w
idth'
]
for
col_row_idx
in
range
(
0
,
output_height
):
for
col_col_idx
in
range
(
0
,
output_width
):
...
...
@@ -73,83 +73,51 @@ def im2col(attrs, im, col):
im_row_offset
][
im_col_offset
]
def
col2img
(
attrs
,
col
,
img
):
"""
img: {CHW}
col:
{output_height, outputWidth, inputChannels, filterHeight, filterWidth}
"""
input_channels
=
im
.
shape
[
0
]
input_height
=
im
.
shape
[
1
]
input_width
=
im
.
shape
[
2
]
output_height
=
col
.
shape
[
0
]
output_width
=
col
.
shape
[
1
]
filter_height
=
col
.
shape
[
3
]
filter_width
=
col
.
shape
[
4
]
def
block_expand
(
inputs
,
attrs
):
output_height
,
output_width
=
get_output_shape
(
attrs
,
inputs
)
img_channels
=
inputs
.
shape
[
1
]
batch_size
=
inputs
.
shape
[
0
]
out
=
np
.
zeros
([
batch_size
,
output_height
,
output_width
,
img_channels
,
attrs
[
'block_height'
],
attrs
[
'block_width'
]
]).
astype
(
"float32"
)
stride_height
=
attrs
[
'strideHeight'
]
stride_width
=
attrs
[
'strideWidth'
]
padding_height
=
attrs
[
'paddingHeight'
]
padding_width
=
attrs
[
'paddingWidth'
]
for
i
in
range
(
len
(
inputs
)):
im2col
(
attrs
,
inputs
[
i
],
out
[
i
])
for
col_row_idx
in
range
(
0
,
output_height
):
for
col_col_idx
in
range
(
0
,
output_width
):
for
channel
in
range
(
0
,
input_channels
):
for
filter_row_idx
in
range
(
0
,
filter_height
):
for
filter_col_idx
in
range
(
0
,
filter_width
):
im_row_offset
=
\
col_row_idx
*
stride_height
+
filter_row_idx
-
padding_height
im_col_offset
=
\
col_col_idx
*
stride_width
+
filter_col_idx
-
padding_width
if
(
im_row_offset
>=
0
and
im_row_offset
<
input_height
and
im_col_offset
>=
0
and
im_col_offset
<
input_width
):
im
[
channel
][
im_row_offset
][
im_col_offset
]
=
\
col
[
col_row_idx
][
col_col_idx
][
channel
][
filter_row_idx
][
filter_col_idx
]
def
get_input_data
(
C
,
H
,
W
):
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
C
,
H
,
W
]).
astype
(
"float32"
)
for
c
in
range
(
0
,
C
):
for
h
in
range
(
0
,
H
):
for
w
in
range
(
0
,
W
):
#x[c][h][w] = c * H * W + h *W + w
x
[
c
][
h
][
w
]
=
0.2
+
0.01
*
(
c
*
H
*
W
+
h
*
W
+
w
)
return
x
out
=
out
.
reshape
([
batch_size
*
output_height
*
output_width
,
img_channels
*
attrs
[
'block_height'
]
*
attrs
[
'block_width'
]
])
return
out
class
TestBlockExpandOp
(
OpTest
):
def
setUp
(
self
):
C
=
3
H
=
4
W
=
4
x
=
get_input_data
(
C
,
H
,
W
)
attrs
=
{
'blockHeight'
:
2
,
'blockWidth'
:
2
,
'strideHeight'
:
1
,
'strideWidth'
:
1
,
'paddingHeight'
:
1
,
'paddingWidth'
:
1
,
def
config
(
self
):
self
.
batch_size
=
1
self
.
img_channels
=
3
self
.
img_height
=
4
self
.
img_width
=
4
self
.
attrs
=
{
'block_height'
:
2
,
'block_width'
:
2
,
'stride_height'
:
1
,
'stride_width'
:
1
,
'padding_height'
:
1
,
'padding_width'
:
1
,
}
output_height
,
output_width
=
get_output_shape
(
attrs
,
x
)
out
=
np
.
random
.
uniform
(
0.1
,
1
,
\
[
output_height
,
output_width
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
]]).
astype
(
"float32"
)
def
setUp
(
self
):
self
.
config
()
self
.
op_type
=
"block_expand"
self
.
inputs
=
{
'X'
:
x
.
reshape
(
1
,
C
,
H
,
W
)}
self
.
attrs
=
attrs
#x = np.random.uniform(0.1, 1,
x
=
np
.
random
.
randint
(
0
,
10
,
[
self
.
batch_size
,
self
.
img_channels
,
self
.
img_height
,
self
.
img_width
]).
astype
(
"float32"
)
im2col
(
attrs
,
x
,
out
)
self
.
outputs
=
{
'Out'
:
out
.
reshape
(
1
,
output_height
,
output_width
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
])
}
out
=
block_expand
(
x
,
self
.
attrs
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -158,42 +126,52 @@ class TestBlockExpandOp(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestBlockExpandOp2
(
OpTest
):
def
setUp
(
self
):
C
=
3
H
=
4
W
=
5
x
=
get_input_data
(
C
,
H
,
W
)
attrs
=
{
'blockHeight'
:
2
,
'blockWidth'
:
1
,
'strideHeight'
:
2
,
'strideWidth'
:
1
,
'paddingHeight'
:
2
,
'paddingWidth'
:
1
,
class
TestBlockExpandOpCase2
(
TestBlockExpandOp
):
def
config
(
self
):
self
.
batch_size
=
2
self
.
img_channels
=
3
self
.
img_height
=
4
self
.
img_width
=
5
self
.
attrs
=
{
'block_height'
:
2
,
'block_width'
:
1
,
'stride_height'
:
2
,
'stride_width'
:
1
,
'padding_height'
:
2
,
'padding_width'
:
1
,
}
output_height
,
output_width
=
get_output_shape
(
attrs
,
x
)
out
=
np
.
random
.
uniform
(
0.1
,
1
,
\
[
output_height
,
output_width
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
]]).
astype
(
"float32"
)
self
.
op_type
=
"block_expand"
self
.
inputs
=
{
'X'
:
x
.
reshape
(
1
,
C
,
H
,
W
)}
self
.
attrs
=
attrs
im2col
(
attrs
,
x
,
out
)
self
.
outputs
=
{
'Out'
:
out
.
reshape
(
1
,
output_height
,
output_width
,
x
.
shape
[
0
],
\
attrs
[
'blockHeight'
],
attrs
[
'blockWidth'
])
}
class
TestBlockExpandOpCase3
(
TestBlockExpandOp
):
def
config
(
self
):
self
.
batch_size
=
3
self
.
img_channels
=
1
self
.
img_height
=
4
self
.
img_width
=
5
self
.
attrs
=
{
'block_height'
:
2
,
'block_width'
:
1
,
'stride_height'
:
2
,
'stride_width'
:
1
,
'padding_height'
:
2
,
'padding_width'
:
0
,
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestBlockExpandOpCase4
(
TestBlockExpandOp
):
def
config
(
self
):
self
.
batch_size
=
2
self
.
img_channels
=
2
self
.
img_height
=
3
self
.
img_width
=
3
self
.
attrs
=
{
'block_height'
:
2
,
'block_width'
:
2
,
'stride_height'
:
1
,
'stride_width'
:
1
,
'padding_height'
:
0
,
'padding_width'
:
0
,
}
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录