object_detector.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
Jack Zhou 已提交
14 15 16 17
#include <sstream>
// for setprecision
#include <iomanip>
#include "include/object_detector.h"
18 19 20 21

namespace PaddleDetection {

// Load Model and create model predictor
22 23 24
void ObjectDetector::LoadModel(const std::string& model_dir,
                               bool use_gpu,
                               const int min_subgraph_size,
25
                               const int batch_size,
C
channings 已提交
26 27
                               const std::string& run_mode,
                               const int gpu_id) {
28 29 30 31 32
  paddle::AnalysisConfig config;
  std::string prog_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
  config.SetModel(prog_file, params_file);
  if (use_gpu) {
C
channings 已提交
33
    config.EnableUseGpu(100, gpu_id);
34 35 36 37 38
    if (run_mode != "fluid") {
      auto precision = paddle::AnalysisConfig::Precision::kFloat32;
      if (run_mode == "trt_fp16") {
        precision = paddle::AnalysisConfig::Precision::kHalf;
      } else if (run_mode == "trt_int8") {
W
wangguanzhong 已提交
39 40
        printf("TensorRT int8 mode is not supported now, "
               "please use 'trt_fp32' or 'trt_fp16' instead");
41
      } else {
42
        if (run_mode != "trt_fp32") {
43 44 45 46 47 48 49 50 51
          printf("run_mode should be 'fluid', 'trt_fp32' or 'trt_fp16'");
        }
      }
      config.EnableTensorRtEngine(
          1 << 10,
          batch_size,
          min_subgraph_size,
          precision,
          false,
W
wangguanzhong 已提交
52
          false);
J
Jack Zhou 已提交
53
   }
54
  } else {
55
    config.DisableGpu();
56 57 58
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
59
  config.DisableGlogInfo();
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  // Memory optimization
  config.EnableMemoryOptim();
  predictor_ = std::move(CreatePaddlePredictor(config));
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<ObjectResult>& results,
                        const std::vector<std::string>& lable_list,
                        const std::vector<int>& colormap) {
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    int w = results[i].rect[1] - results[i].rect[0];
    int h = results[i].rect[3] - results[i].rect[2];
    cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);

    // Configure color and text size
J
Jack Zhou 已提交
77 78 79 80 81
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    oss << lable_list[results[i].class_id] << " ";
    oss << results[i].confidence;
    std::string text = oss.str();
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size = cv::getTextSize(text,
                                         font_face,
                                         font_scale,
                                         thickness,
                                         nullptr);
    cv::Point origin;
    origin.x = roi.x;
    origin.y = roi.y;

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
                                  results[i].rect[2] - text_size.height,
                                  text_size.width,
                                  text_size.height);

    // Draw roi object, text, and background
    cv::rectangle(vis_img, roi, roi_color, 2);
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
111
                font_scale,
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(
    const cv::Mat& raw_mat,
    std::vector<ObjectResult>* result) {
  result->clear();
  int rh = 1;
  int rw = 1;
  if (config_.arch_ == "SSD" || config_.arch_ == "Face") {
    rh = raw_mat.rows;
    rw = raw_mat.cols;
  }

  int total_size = output_data_.size() / 6;
  for (int j = 0; j < total_size; ++j) {
    // Class id
    int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
    // Confidence score
    float score = output_data_[1 + j * 6];
    int xmin = (output_data_[2 + j * 6] * rw);
    int ymin = (output_data_[3 + j * 6] * rh);
    int xmax = (output_data_[4 + j * 6] * rw);
    int ymax = (output_data_[5 + j * 6] * rh);
    int wd = xmax - xmin;
    int hd = ymax - ymin;
W
wangguanzhong 已提交
148
    if (score > threshold_ && class_id > -1) {
149 150 151 152 153 154 155 156 157 158
      ObjectResult result_item;
      result_item.rect = {xmin, xmax, ymin, ymax};
      result_item.class_id = class_id;
      result_item.confidence = score;
      result->push_back(result_item);
    }
  }
}

void ObjectDetector::Predict(const cv::Mat& im,
159 160 161 162 163
      const double threshold,
      const int warmup,
      const int repeats,
      const bool run_benchmark,
      std::vector<ObjectResult>* result) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  // Preprocess image
  Preprocess(im);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputTensor(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.eval_im_size_f_[0];
      int rw = inputs_.eval_im_size_f_[1];
      in_tensor->Reshape({1, 3, rh, rw});
      in_tensor->copy_from_cpu(inputs_.im_data_.data());
    } else if (tensor_name == "im_size") {
      in_tensor->Reshape({1, 2});
      in_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
    } else if (tensor_name == "im_info") {
      in_tensor->Reshape({1, 3});
      in_tensor->copy_from_cpu(inputs_.eval_im_size_f_.data());
    } else if (tensor_name == "im_shape") {
      in_tensor->Reshape({1, 3});
      in_tensor->copy_from_cpu(inputs_.ori_im_size_f_.data());
W
wangguanzhong 已提交
184 185 186
    } else if (tensor_name == "scale_factor") {
      in_tensor->Reshape({1, 4});
      in_tensor->copy_from_cpu(inputs_.scale_factor_f_.data());
187 188 189
    }
  }
  // Run predictor
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  for (int i = 0; i < warmup; i++)
  {
    predictor_->ZeroCopyRun();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->copy_to_cpu(output_data_.data()); 
C
channings 已提交
208 209
  }

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  std::clock_t start = clock();
  for (int i = 0; i < repeats; i++)
  {
    predictor_->ZeroCopyRun();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->copy_to_cpu(output_data_.data()); 
229
  }
230 231 232
  std::clock_t end = clock();
  float ms = static_cast<float>(end - start) / CLOCKS_PER_SEC / repeats * 1000.;
  printf("Inference: %f ms per batch image\n", ms);
233
  // Postprocessing result
234 235 236
  if(!run_benchmark) {
    Postprocess(im,  result);
  }
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PaddleDetection