Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
d7d3fbea
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7d3fbea
编写于
9月 11, 2020
作者:
W
wangxinxin08
提交者:
GitHub
9月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify deploy inference code (#1394)
fix compile error in code modify code for inference
上级
399ed5a0
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
92 addition
and
42 deletion
+92
-42
deploy/cpp/include/object_detector.h
deploy/cpp/include/object_detector.h
+7
-3
deploy/cpp/src/main.cc
deploy/cpp/src/main.cc
+35
-23
deploy/cpp/src/object_detector.cc
deploy/cpp/src/object_detector.cc
+50
-16
未找到文件。
deploy/cpp/include/object_detector.h
浏览文件 @
d7d3fbea
...
...
@@ -18,6 +18,7 @@
#include <vector>
#include <memory>
#include <utility>
#include <ctime>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
...
...
@@ -74,9 +75,12 @@ class ObjectDetector {
const
int
gpu_id
=
0
);
// Run predictor
void
Predict
(
const
cv
::
Mat
&
img
,
std
::
vector
<
ObjectResult
>*
result
);
void
Predict
(
const
cv
::
Mat
&
im
,
const
double
threshold
=
0.5
,
const
int
warmup
=
0
,
const
int
repeats
=
1
,
const
bool
run_benchmark
=
false
,
std
::
vector
<
ObjectResult
>*
result
=
nullptr
);
// Get Model Label list
const
std
::
vector
<
std
::
string
>&
GetLabelList
()
const
{
...
...
deploy/cpp/src/main.cc
浏览文件 @
d7d3fbea
...
...
@@ -29,6 +29,9 @@ DEFINE_bool(use_camera, false, "Use camera or not");
DEFINE_string
(
run_mode
,
"fluid"
,
"Mode of running(fluid/trt_fp32/trt_fp16)"
);
DEFINE_int32
(
gpu_id
,
0
,
"Device id of GPU to execute"
);
DEFINE_int32
(
camera_id
,
-
1
,
"Device id of camera to predict"
);
DEFINE_bool
(
run_benchmark
,
false
,
"Whether to predict a image_file repeatedly for benchmark"
);
DEFINE_double
(
threshold
,
0.5
,
"Threshold of score."
);
DEFINE_string
(
output_dir
,
"output"
,
"Directory of output visualization files."
);
void
PredictVideo
(
const
std
::
string
&
video_path
,
PaddleDetection
::
ObjectDetector
*
det
)
{
...
...
@@ -72,7 +75,7 @@ void PredictVideo(const std::string& video_path,
if
(
frame
.
empty
())
{
break
;
}
det
->
Predict
(
frame
,
&
result
);
det
->
Predict
(
frame
,
0.5
,
0
,
1
,
false
,
&
result
);
cv
::
Mat
out_im
=
PaddleDetection
::
VisualizeResult
(
frame
,
result
,
labels
,
colormap
);
for
(
const
auto
&
item
:
result
)
{
...
...
@@ -93,31 +96,40 @@ void PredictVideo(const std::string& video_path,
}
void
PredictImage
(
const
std
::
string
&
image_path
,
PaddleDetection
::
ObjectDetector
*
det
)
{
const
double
threshold
,
const
bool
run_benchmark
,
PaddleDetection
::
ObjectDetector
*
det
,
const
std
::
string
&
output_dir
=
"output"
)
{
// Open input image as an opencv cv::Mat object
cv
::
Mat
im
=
cv
::
imread
(
image_path
,
1
);
// Store all detected result
std
::
vector
<
PaddleDetection
::
ObjectResult
>
result
;
det
->
Predict
(
im
,
&
result
);
for
(
const
auto
&
item
:
result
)
{
printf
(
"class=%d confidence=%.4f rect=[%d %d %d %d]
\n
"
,
item
.
class_id
,
item
.
confidence
,
item
.
rect
[
0
],
item
.
rect
[
1
],
item
.
rect
[
2
],
item
.
rect
[
3
]);
if
(
run_benchmark
)
{
det
->
Predict
(
im
,
threshold
,
100
,
100
,
run_benchmark
,
&
result
);
}
else
{
det
->
Predict
(
im
,
0.5
,
0
,
1
,
run_benchmark
,
&
result
);
for
(
const
auto
&
item
:
result
)
{
printf
(
"class=%d confidence=%.4f rect=[%d %d %d %d]
\n
"
,
item
.
class_id
,
item
.
confidence
,
item
.
rect
[
0
],
item
.
rect
[
1
],
item
.
rect
[
2
],
item
.
rect
[
3
]);
}
// Visualization result
auto
labels
=
det
->
GetLabelList
();
auto
colormap
=
PaddleDetection
::
GenerateColorMap
(
labels
.
size
());
cv
::
Mat
vis_img
=
PaddleDetection
::
VisualizeResult
(
im
,
result
,
labels
,
colormap
);
std
::
vector
<
int
>
compression_params
;
compression_params
.
push_back
(
CV_IMWRITE_JPEG_QUALITY
);
compression_params
.
push_back
(
95
);
cv
::
imwrite
(
output_dir
+
"/output.jpg"
,
vis_img
,
compression_params
);
printf
(
"Visualized output saved as output.jpg
\n
"
);
}
// Visualization result
auto
labels
=
det
->
GetLabelList
();
auto
colormap
=
PaddleDetection
::
GenerateColorMap
(
labels
.
size
());
cv
::
Mat
vis_img
=
PaddleDetection
::
VisualizeResult
(
im
,
result
,
labels
,
colormap
);
std
::
vector
<
int
>
compression_params
;
compression_params
.
push_back
(
CV_IMWRITE_JPEG_QUALITY
);
compression_params
.
push_back
(
95
);
cv
::
imwrite
(
"output.jpg"
,
vis_img
,
compression_params
);
printf
(
"Visualized output saved as output.jpg
\n
"
);
}
int
main
(
int
argc
,
char
**
argv
)
{
...
...
@@ -139,10 +151,10 @@ int main(int argc, char** argv) {
PaddleDetection
::
ObjectDetector
det
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_run_mode
,
FLAGS_gpu_id
);
// Do inference on input video or image
if
(
!
FLAGS_video_path
.
empty
()
or
FLAGS_use_camera
)
{
if
(
!
FLAGS_video_path
.
empty
()
||
FLAGS_use_camera
)
{
PredictVideo
(
FLAGS_video_path
,
&
det
);
}
else
if
(
!
FLAGS_image_path
.
empty
())
{
PredictImage
(
FLAGS_image_path
,
&
det
);
PredictImage
(
FLAGS_image_path
,
FLAGS_threshold
,
FLAGS_run_benchmark
,
&
det
,
FLAGS_output_dir
);
}
return
0
;
}
deploy/cpp/src/object_detector.cc
浏览文件 @
d7d3fbea
...
...
@@ -39,7 +39,7 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
printf
(
"TensorRT int8 mode is not supported now, "
"please use 'trt_fp32' or 'trt_fp16' instead"
);
}
else
{
if
(
run_mode
!=
"trt_32"
)
{
if
(
run_mode
!=
"trt_
fp
32"
)
{
printf
(
"run_mode should be 'fluid', 'trt_fp32' or 'trt_fp16'"
);
}
}
...
...
@@ -56,6 +56,7 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
}
config
.
SwitchUseFeedFetchOps
(
false
);
config
.
SwitchSpecifyInputNames
(
true
);
config
.
DisableGlogInfo
();
// Memory optimization
config
.
EnableMemoryOptim
();
predictor_
=
std
::
move
(
CreatePaddlePredictor
(
config
));
...
...
@@ -155,7 +156,11 @@ void ObjectDetector::Postprocess(
}
void
ObjectDetector
::
Predict
(
const
cv
::
Mat
&
im
,
std
::
vector
<
ObjectResult
>*
result
)
{
const
double
threshold
,
const
int
warmup
,
const
int
repeats
,
const
bool
run_benchmark
,
std
::
vector
<
ObjectResult
>*
result
)
{
// Preprocess image
Preprocess
(
im
);
// Prepare input tensor
...
...
@@ -182,24 +187,53 @@ void ObjectDetector::Predict(const cv::Mat& im,
}
}
// Run predictor
predictor_
->
ZeroCopyRun
();
// Get output tensor
auto
output_names
=
predictor_
->
GetOutputNames
();
auto
out_tensor
=
predictor_
->
GetOutputTensor
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
out_tensor
->
shape
();
// Calculate output length
int
output_size
=
1
;
for
(
int
j
=
0
;
j
<
output_shape
.
size
();
++
j
)
{
output_size
*=
output_shape
[
j
];
for
(
int
i
=
0
;
i
<
warmup
;
i
++
)
{
predictor_
->
ZeroCopyRun
();
// Get output tensor
auto
output_names
=
predictor_
->
GetOutputNames
();
auto
out_tensor
=
predictor_
->
GetOutputTensor
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
out_tensor
->
shape
();
// Calculate output length
int
output_size
=
1
;
for
(
int
j
=
0
;
j
<
output_shape
.
size
();
++
j
)
{
output_size
*=
output_shape
[
j
];
}
if
(
output_size
<
6
)
{
std
::
cerr
<<
"[WARNING] No object detected."
<<
std
::
endl
;
}
output_data_
.
resize
(
output_size
);
out_tensor
->
copy_to_cpu
(
output_data_
.
data
());
}
if
(
output_size
<
6
)
{
std
::
cerr
<<
"[WARNING] No object detected."
<<
std
::
endl
;
std
::
clock_t
start
=
clock
();
for
(
int
i
=
0
;
i
<
repeats
;
i
++
)
{
predictor_
->
ZeroCopyRun
();
// Get output tensor
auto
output_names
=
predictor_
->
GetOutputNames
();
auto
out_tensor
=
predictor_
->
GetOutputTensor
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
out_tensor
->
shape
();
// Calculate output length
int
output_size
=
1
;
for
(
int
j
=
0
;
j
<
output_shape
.
size
();
++
j
)
{
output_size
*=
output_shape
[
j
];
}
if
(
output_size
<
6
)
{
std
::
cerr
<<
"[WARNING] No object detected."
<<
std
::
endl
;
}
output_data_
.
resize
(
output_size
);
out_tensor
->
copy_to_cpu
(
output_data_
.
data
());
}
output_data_
.
resize
(
output_size
);
out_tensor
->
copy_to_cpu
(
output_data_
.
data
());
std
::
clock_t
end
=
clock
();
float
ms
=
static_cast
<
float
>
(
end
-
start
)
/
CLOCKS_PER_SEC
/
repeats
*
1000.
;
printf
(
"Inference: %f ms per batch image
\n
"
,
ms
);
// Postprocessing result
Postprocess
(
im
,
result
);
if
(
!
run_benchmark
)
{
Postprocess
(
im
,
result
);
}
}
std
::
vector
<
int
>
GenerateColorMap
(
int
num_class
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录