train.py 7.5 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
FDInSky 已提交
15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
18 19 20 21 22 23
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

F
FDInSky 已提交
24 25 26 27 28
import time
# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
29
import datetime
F
FDInSky 已提交
30
import numpy as np
31
from collections import deque
W
wangxinxin08 已提交
32
import paddle
F
FDInSky 已提交
33
from ppdet.core.workspace import load_config, merge_config, create
34
from ppdet.utils.stats import TrainingStats
F
FDInSky 已提交
35 36
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
W
wangguanzhong 已提交
37
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight, save_model
38
from export_model import dygraph_to_static
G
Guanghua Yu 已提交
39
from paddle.distributed import ParallelEnv
40 41 42 43
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
F
FDInSky 已提交
44 45 46 47 48


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
W
wangguanzhong 已提交
49
        "--weight_type",
F
FDInSky 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")

    parser.add_argument(
        '--is_profiler',
        type=int,
        default=0,
        help='The switch of profiler tools. (used for benchmark)')

    args = parser.parse_args()
    return args


G
Guanghua Yu 已提交
103
def run(FLAGS, cfg, place):
F
FDInSky 已提交
104 105 106 107 108 109 110 111
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

112
    if FLAGS.enable_ce:
F
FDInSky 已提交
113 114 115
        random.seed(0)
        np.random.seed(0)

G
Guanghua Yu 已提交
116
    if ParallelEnv().nranks > 1:
117 118
        paddle.distributed.init_parallel_env()

G
Guanghua Yu 已提交
119 120 121 122 123
    # Data 
    dataset = cfg.TrainDataset
    train_loader, step_per_epoch = create('TrainReader')(
        dataset, cfg['worker_num'], place)

F
FDInSky 已提交
124
    # Model
125
    model = create(cfg.architecture)
F
FDInSky 已提交
126 127

    # Optimizer
W
wangguanzhong 已提交
128
    lr = create('LearningRate')(step_per_epoch)
F
FDInSky 已提交
129 130 131
    optimizer = create('OptimizerBuilder')(lr, model.parameters())

    # Init Model & Optimzer   
132
    start_epoch = 0
W
wangguanzhong 已提交
133
    if FLAGS.weight_type == 'resume':
134
        start_epoch = load_weight(model, cfg.pretrain_weights, optimizer)
W
wangguanzhong 已提交
135 136 137 138
    else:
        load_pretrain_weight(model, cfg.pretrain_weights,
                             cfg.get('load_static_weights', False),
                             FLAGS.weight_type)
F
FDInSky 已提交
139

140 141 142 143 144 145 146 147
    if getattr(model.backbone, 'norm_type', None) == 'sync_bn':
        assert cfg.use_gpu and ParallelEnv(
        ).nranks > 1, 'you should use bn rather than sync_bn while using a single gpu'
    # sync_bn = (getattr(model.backbone, 'norm_type', None) == 'sync_bn' and
    #            cfg.use_gpu and ParallelEnv().nranks > 1)
    # if sync_bn:
    #     model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)

W
wangguanzhong 已提交
148
    # Parallel Model 
G
Guanghua Yu 已提交
149
    if ParallelEnv().nranks > 1:
150
        model = paddle.DataParallel(model)
W
wangguanzhong 已提交
151

152
    fields = train_loader.collate_fn.output_fields
153 154
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
G
Guanghua Yu 已提交
155
    # Run Train
156
    time_stat = deque(maxlen=cfg.log_iter)
157 158
    start_time = time.time()
    end_time = time.time()
W
wangguanzhong 已提交
159
    # Run Train
160
    for cur_eid in range(start_epoch, int(cfg.epoch)):
161
        train_loader.dataset.epoch = cur_eid
G
Guanghua Yu 已提交
162 163 164 165 166
        for iter_id, data in enumerate(train_loader):
            start_time = end_time
            end_time = time.time()
            time_stat.append(end_time - start_time)
            time_cost = np.mean(time_stat)
W
wangguanzhong 已提交
167 168
            eta_sec = (
                (cfg.epoch - cur_eid) * step_per_epoch - iter_id) * time_cost
G
Guanghua Yu 已提交
169 170 171 172
            eta = str(datetime.timedelta(seconds=int(eta_sec)))

            # Model Forward
            model.train()
173
            outputs = model(data=data, input_def=fields, mode='train')
G
Guanghua Yu 已提交
174 175 176

            # Model Backward
            loss = outputs['loss']
W
wangguanzhong 已提交
177
            loss.backward()
G
Guanghua Yu 已提交
178 179 180 181 182 183 184
            optimizer.step()
            curr_lr = optimizer.get_lr()
            lr.step()
            optimizer.clear_grad()

            if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
                # Log state 
185
                if cur_eid == start_epoch and iter_id == 0:
G
Guanghua Yu 已提交
186 187 188 189
                    train_stats = TrainingStats(cfg.log_iter, outputs.keys())
                train_stats.update(outputs)
                logs = train_stats.log()
                if iter_id % cfg.log_iter == 0:
W
wangguanzhong 已提交
190 191 192
                    ips = float(cfg['TrainReader']['batch_size']) / time_cost
                    strs = 'Epoch:{}: iter: {}, lr: {:.6f}, {}, eta: {}, batch_cost: {:.5f} sec, ips: {:.5f} images/sec'.format(
                        cur_eid, iter_id, curr_lr, logs, eta, time_cost, ips)
G
Guanghua Yu 已提交
193 194 195
                    logger.info(strs)

        # Save Stage 
196 197 198
        if ParallelEnv().local_rank == 0 and (
                cur_eid % cfg.snapshot_epoch == 0 or
            (cur_eid + 1) == int(cfg.epoch)):
W
wangguanzhong 已提交
199
            save_name = str(cur_eid) if cur_eid + 1 != int(
G
Guanghua Yu 已提交
200
                cfg.epoch) else "model_final"
201
            save_model(model, optimizer, save_dir, save_name, cur_eid + 1)
202 203 204
        # TODO(guanghua): dygraph model to static model
        # if ParallelEnv().local_rank == 0 and (cur_eid + 1) == int(cfg.epoch)):
        #     dygraph_to_static(model, os.path.join(save_dir, 'static_model_final'), cfg)
F
FDInSky 已提交
205 206 207


def main():
208 209 210 211 212 213 214 215
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_version()

G
Guanghua Yu 已提交
216 217 218 219
    place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu'
    place = paddle.set_device(place)

    run(FLAGS, cfg, place)
F
FDInSky 已提交
220 221 222 223


if __name__ == "__main__":
    main()