train.py 6.2 KB
Newer Older
F
FDInSky 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
4 5 6 7 8 9
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

F
FDInSky 已提交
10 11 12 13 14
import time
# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
15
import datetime
F
FDInSky 已提交
16
import numpy as np
17
from collections import deque
F
FDInSky 已提交
18 19 20
import paddle.fluid as fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader
21
from ppdet.utils.stats import TrainingStats
F
FDInSky 已提交
22 23 24
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.utils.checkpoint import load_dygraph_ckpt, save_dygraph_ckpt
25 26 27 28 29
from paddle.fluid.dygraph.parallel import ParallelEnv
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
F
FDInSky 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "-ckpt_type",
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")

    parser.add_argument(
        '--is_profiler',
        type=int,
        default=0,
        help='The switch of profiler tools. (used for benchmark)')

    args = parser.parse_args()
    return args


def run(FLAGS, cfg):
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

98
    if FLAGS.enable_ce:
F
FDInSky 已提交
99 100 101 102 103
        random.seed(0)
        np.random.seed(0)

    # Model
    main_arch = cfg.architecture
104
    model = create(cfg.architecture)
F
FDInSky 已提交
105 106 107 108 109 110 111 112 113 114

    # Optimizer
    lr = create('LearningRate')()
    optimizer = create('OptimizerBuilder')(lr, model.parameters())

    # Init Model & Optimzer   
    model = load_dygraph_ckpt(
        model,
        optimizer,
        cfg.pretrain_weights,
115
        ckpt_type=FLAGS.ckpt_type,
W
wangguanzhong 已提交
116
        load_static_weights=cfg.get('load_static_weights', False))
F
FDInSky 已提交
117

W
wangguanzhong 已提交
118
    # Parallel Model 
119
    if ParallelEnv().nranks > 1:
W
wangguanzhong 已提交
120 121 122
        strategy = fluid.dygraph.parallel.prepare_context()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

F
FDInSky 已提交
123 124 125
    # Data Reader 
    start_iter = 0
    if cfg.use_gpu:
W
wangguanzhong 已提交
126
        devices_num = fluid.core.get_cuda_device_count()
F
FDInSky 已提交
127 128 129 130
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    train_reader = create_reader(
131
        cfg.TrainReader, (cfg.max_iters - start_iter), cfg, devices_num=1)
F
FDInSky 已提交
132

133 134 135
    time_stat = deque(maxlen=cfg.log_smooth_window)
    start_time = time.time()
    end_time = time.time()
F
FDInSky 已提交
136 137
    # Run Train 
    for iter_id, data in enumerate(train_reader()):
138 139 140 141 142 143 144

        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - iter_id) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
F
FDInSky 已提交
145 146 147

        # Model Forward
        model.train()
148 149
        outputs = model(data, cfg['TrainReader']['inputs_def']['fields'],
                        'train')
F
FDInSky 已提交
150 151 152

        # Model Backward
        loss = outputs['loss']
153
        if ParallelEnv().nranks > 1:
F
FDInSky 已提交
154 155 156 157 158 159 160 161
            loss = model.scale_loss(loss)
            loss.backward()
            model.apply_collective_grads()
        else:
            loss.backward()
        optimizer.minimize(loss)
        model.clear_gradients()
        curr_lr = optimizer.current_step_lr()
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

        if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
            # Log state 
            if iter_id == 0:
                train_stats = TrainingStats(cfg.log_smooth_window,
                                            outputs.keys())
            train_stats.update(outputs)
            logs = train_stats.log()
            if iter_id % cfg.log_iter == 0:
                strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                    iter_id, curr_lr, logs, time_cost, eta)
                logger.info(strs)
            # Save Stage 
            if iter_id > 0 and iter_id % int(
                    cfg.snapshot_iter) == 0 or iter_id == cfg.max_iters - 1:
                cfg_name = os.path.basename(FLAGS.config).split('.')[0]
                save_name = str(
                    iter_id) if iter_id != cfg.max_iters - 1 else "model_final"
W
wangguanzhong 已提交
180 181
                save_dir = os.path.join(cfg.save_dir, cfg_name)
                save_dygraph_ckpt(model, optimizer, save_dir, save_name)
F
FDInSky 已提交
182 183 184 185 186 187 188 189 190 191 192


def main():
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_version()

193
    place = fluid.CUDAPlace(ParallelEnv().dev_id) \
F
FDInSky 已提交
194 195 196 197 198 199 200 201
                    if cfg.use_gpu else fluid.CPUPlace()

    with fluid.dygraph.guard(place):
        run(FLAGS, cfg)


if __name__ == "__main__":
    main()