train.py 7.2 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
FDInSky 已提交
15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
18 19 20 21 22 23
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

F
FDInSky 已提交
24 25 26 27 28
import time
# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
29
import datetime
F
FDInSky 已提交
30
import numpy as np
31
from collections import deque
W
wangxinxin08 已提交
32
import paddle
F
FDInSky 已提交
33
from ppdet.core.workspace import load_config, merge_config, create
34
from ppdet.utils.stats import TrainingStats
F
FDInSky 已提交
35 36
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
W
wangguanzhong 已提交
37
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight, save_model
G
Guanghua Yu 已提交
38
from paddle.distributed import ParallelEnv
39 40 41 42
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
F
FDInSky 已提交
43 44 45 46 47


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
W
wangguanzhong 已提交
48
        "--weight_type",
F
FDInSky 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/scalar",
        help='Tensorboard logging directory for scalar.')
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")

    parser.add_argument(
        '--is_profiler',
        type=int,
        default=0,
        help='The switch of profiler tools. (used for benchmark)')

    args = parser.parse_args()
    return args


G
Guanghua Yu 已提交
102
def run(FLAGS, cfg, place):
F
FDInSky 已提交
103 104 105 106 107 108 109 110
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

111
    if FLAGS.enable_ce:
F
FDInSky 已提交
112 113 114
        random.seed(0)
        np.random.seed(0)

G
Guanghua Yu 已提交
115
    if ParallelEnv().nranks > 1:
116 117
        paddle.distributed.init_parallel_env()

G
Guanghua Yu 已提交
118 119 120 121 122
    # Data 
    dataset = cfg.TrainDataset
    train_loader, step_per_epoch = create('TrainReader')(
        dataset, cfg['worker_num'], place)

F
FDInSky 已提交
123
    # Model
124
    model = create(cfg.architecture)
F
FDInSky 已提交
125 126

    # Optimizer
W
wangguanzhong 已提交
127
    lr = create('LearningRate')(step_per_epoch)
F
FDInSky 已提交
128 129 130
    optimizer = create('OptimizerBuilder')(lr, model.parameters())

    # Init Model & Optimzer   
131
    start_epoch = 0
W
wangguanzhong 已提交
132
    if FLAGS.weight_type == 'resume':
133
        start_epoch = load_weight(model, cfg.pretrain_weights, optimizer)
W
wangguanzhong 已提交
134 135 136 137
    else:
        load_pretrain_weight(model, cfg.pretrain_weights,
                             cfg.get('load_static_weights', False),
                             FLAGS.weight_type)
F
FDInSky 已提交
138

139 140 141 142 143 144 145 146
    if getattr(model.backbone, 'norm_type', None) == 'sync_bn':
        assert cfg.use_gpu and ParallelEnv(
        ).nranks > 1, 'you should use bn rather than sync_bn while using a single gpu'
    # sync_bn = (getattr(model.backbone, 'norm_type', None) == 'sync_bn' and
    #            cfg.use_gpu and ParallelEnv().nranks > 1)
    # if sync_bn:
    #     model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)

W
wangguanzhong 已提交
147
    # Parallel Model 
G
Guanghua Yu 已提交
148
    if ParallelEnv().nranks > 1:
149
        model = paddle.DataParallel(model)
W
wangguanzhong 已提交
150

151
    fields = train_loader.collate_fn.output_fields
G
Guanghua Yu 已提交
152
    # Run Train
153
    time_stat = deque(maxlen=cfg.log_iter)
154 155
    start_time = time.time()
    end_time = time.time()
W
wangguanzhong 已提交
156
    # Run Train
157
    for cur_eid in range(start_epoch, int(cfg.epoch)):
158
        train_loader.dataset.epoch = cur_eid
G
Guanghua Yu 已提交
159 160 161 162 163
        for iter_id, data in enumerate(train_loader):
            start_time = end_time
            end_time = time.time()
            time_stat.append(end_time - start_time)
            time_cost = np.mean(time_stat)
W
wangguanzhong 已提交
164 165
            eta_sec = (
                (cfg.epoch - cur_eid) * step_per_epoch - iter_id) * time_cost
G
Guanghua Yu 已提交
166 167 168 169
            eta = str(datetime.timedelta(seconds=int(eta_sec)))

            # Model Forward
            model.train()
170
            outputs = model(data, fields, 'train')
G
Guanghua Yu 已提交
171 172 173

            # Model Backward
            loss = outputs['loss']
W
wangguanzhong 已提交
174
            loss.backward()
G
Guanghua Yu 已提交
175 176 177 178 179 180 181
            optimizer.step()
            curr_lr = optimizer.get_lr()
            lr.step()
            optimizer.clear_grad()

            if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
                # Log state 
182
                if cur_eid == start_epoch and iter_id == 0:
G
Guanghua Yu 已提交
183 184 185 186
                    train_stats = TrainingStats(cfg.log_iter, outputs.keys())
                train_stats.update(outputs)
                logs = train_stats.log()
                if iter_id % cfg.log_iter == 0:
W
wangguanzhong 已提交
187 188 189
                    ips = float(cfg['TrainReader']['batch_size']) / time_cost
                    strs = 'Epoch:{}: iter: {}, lr: {:.6f}, {}, eta: {}, batch_cost: {:.5f} sec, ips: {:.5f} images/sec'.format(
                        cur_eid, iter_id, curr_lr, logs, eta, time_cost, ips)
G
Guanghua Yu 已提交
190 191 192
                    logger.info(strs)

        # Save Stage 
193 194 195
        if ParallelEnv().local_rank == 0 and (
                cur_eid % cfg.snapshot_epoch == 0 or
            (cur_eid + 1) == int(cfg.epoch)):
G
Guanghua Yu 已提交
196
            cfg_name = os.path.basename(FLAGS.config).split('.')[0]
W
wangguanzhong 已提交
197
            save_name = str(cur_eid) if cur_eid + 1 != int(
G
Guanghua Yu 已提交
198 199
                cfg.epoch) else "model_final"
            save_dir = os.path.join(cfg.save_dir, cfg_name)
200
            save_model(model, optimizer, save_dir, save_name, cur_eid + 1)
F
FDInSky 已提交
201 202 203


def main():
204 205 206 207 208 209 210 211
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_version()

G
Guanghua Yu 已提交
212 213 214 215
    place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu'
    place = paddle.set_device(place)

    run(FLAGS, cfg, place)
F
FDInSky 已提交
216 217 218 219


if __name__ == "__main__":
    main()