infer.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
17
import time
18
import yaml
19 20
import ast
from functools import reduce
21

22 23 24
from PIL import Image
import cv2
import numpy as np
25
import paddle
26
import paddle.fluid as fluid
27
from preprocess import preprocess, ResizeOp, NormalizeImageOp, PermuteOp, PadStride
28
from visualize import visualize_box_mask
29 30
from paddle.inference import Config
from paddle.inference import create_predictor
31

32 33 34 35 36
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
}
37 38


39 40
class Detector(object):
    """
41
    Args:
42 43 44 45 46
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        use_gpu (bool): whether use gpu
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        threshold (float): threshold to reserve the result for output.
47 48 49
    """

    def __init__(self,
50 51 52 53 54 55 56 57 58 59 60
                 pred_config,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
                 threshold=0.5):
        self.pred_config = pred_config
        self.predictor = load_predictor(
            model_dir,
            run_mode=run_mode,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            use_gpu=use_gpu)
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
        im, im_info = preprocess(im, preprocess_ops,
                                 self.pred_config.input_shape)
        inputs = create_inputs(im, im_info)
        return inputs

    def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
        # postprocess output of predictor
        results = {}
        if self.pred_config.arch in ['SSD', 'Face']:
            h, w = inputs['im_shape']
            scale_y, scale_x = inputs['scale_factor']
            w, h = float(h) / scale_y, float(w) / scale_x
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
        np_boxes = np_boxes[expect_boxes, :]
        for box in np_boxes:
            print('class_id:{:d}, confidence:{:.4f},'
                  'left_top:[{:.2f},{:.2f}],'
                  ' right_bottom:[{:.2f},{:.2f}]'.format(
                      int(box[0]), box[1], box[2], box[3], box[4], box[5]))
        results['boxes'] = np_boxes
        if np_masks is not None:
            np_masks = np_masks[expect_boxes, :, :, :]
            results['masks'] = np_masks
        return results
96

97 98 99 100 101 102 103
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
        '''
104
        Args:
105 106
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
107
        Returns:
108 109 110 111 112 113 114 115 116 117 118
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape:[N, class_num, mask_resolution, mask_resolution]
        '''
        inputs = self.preprocess(image)
        np_boxes, np_masks = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
119

120 121 122 123 124 125 126 127
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.mask_resolution is not None:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                np_masks = masks_tensor.copy_to_cpu()
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        t1 = time.time()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.pred_config.mask_resolution is not None:
                masks_tensor = self.predictor.get_output_handle(output_names[1])
                np_masks = masks_tensor.copy_to_cpu()
        t2 = time.time()
        ms = (t2 - t1) * 1000.0 / repeats
        print("Inference: {} ms per batch image".format(ms))

        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
            if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
                print('[WARNNING] No object detected.')
                results = {'boxes': np.array([])}
            else:
                results = self.postprocess(
                    np_boxes, np_masks, inputs, threshold=threshold)
151

152
        return results
153 154


155
def create_inputs(im, im_info):
156 157 158 159 160 161 162 163 164
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
165 166 167 168 169
    inputs['image'] = np.array((im, )).astype('float32')
    inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')
    inputs['scale_factor'] = np.array(
        (im_info['scale_factor'], )).astype('float32')

170 171 172
    return inputs


173
class PredictConfig():
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.mask_resolution = None
        if 'mask_resolution' in yml_conf:
            self.mask_resolution = yml_conf['mask_resolution']
192 193
        self.input_shape = yml_conf['image_shape']
        self.print_config()
194 195 196 197 198 199

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
200
        for support_model in SUPPORT_MODELS:
201 202
            if support_model in yml_conf['arch']:
                return True
203 204 205 206 207 208 209 210 211 212
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')
213 214 215 216 217 218 219


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
                   min_subgraph_size=3):
220
    """set AnalysisConfig, generate AnalysisPredictor
221 222 223 224 225 226
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
227
        ValueError: predict by TensorRT need use_gpu == True.
228
    """
229
    if not use_gpu and not run_mode == 'fluid':
230 231 232
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
W
wangguanzhong 已提交
233 234 235
    if run_mode == 'trt_int8':
        raise ValueError("TensorRT int8 mode is not supported now, "
                         "please use trt_fp32 or trt_fp16 instead.")
236 237 238
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
239
    precision_map = {
240 241 242
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
243 244 245
    }
    if use_gpu:
        # initial GPU memory(M), device ID
246
        config.enable_use_gpu(200, 0)
247 248 249 250 251 252 253
        # optimize graph and fuse op
        config.switch_ir_optim(True)
    else:
        config.disable_gpu()

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
254
            workspace_size=1 << 10,
255 256 257 258
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
W
wangguanzhong 已提交
259
            use_calib_mode=False)
260 261 262 263 264

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
265
    # disable feed, fetch OP, needed by zero_copy_run
266
    config.switch_use_feed_fetch_ops(False)
267
    predictor = create_predictor(config)
268 269 270 271 272 273 274
    return predictor


def visualize(image_file,
              results,
              labels,
              mask_resolution=14,
275 276
              output_dir='output/',
              threshold=0.5):
277 278
    # visualize the predict result
    im = visualize_box_mask(
279 280 281 282 283
        image_file,
        results,
        labels,
        mask_resolution=mask_resolution,
        threshold=threshold)
284 285 286 287 288 289 290 291
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


292 293 294 295 296
def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')
297 298


299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
def predict_image(detector):
    if FLAGS.run_benchmark:
        detector.predict(
            FLAGS.image_file,
            FLAGS.threshold,
            warmup=100,
            repeats=100,
            run_benchmark=True)
    else:
        results = detector.predict(FLAGS.image_file, FLAGS.threshold)
        visualize(
            FLAGS.image_file,
            results,
            detector.pred_config.labels,
            mask_resolution=detector.pred_config.mask_resolution,
            output_dir=FLAGS.output_dir,
            threshold=FLAGS.threshold)
316 317


318 319 320 321 322 323 324
def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
325 326 327
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
328
    # yapf: disable
K
Kaipeng Deng 已提交
329
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
330
    # yapf: enable
331
    if not os.path.exists(FLAGS.output_dir):
332
        os.makedirs(FLAGS.output_dir)
333 334 335 336 337 338 339 340 341 342 343 344 345
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
346 347 348
            detector.pred_config.labels,
            mask_resolution=detector.pred_config.mask_resolution,
            threshold=FLAGS.threshold)
349 350
        im = np.array(im)
        writer.write(im)
351 352 353 354
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
355 356 357
    writer.release()


358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector = Detector(
        pred_config,
        FLAGS.model_dir,
        use_gpu=FLAGS.use_gpu,
        run_mode=FLAGS.run_mode)
    # predict from image
    if FLAGS.image_file != '':
        predict_image(detector)
    # predict from video file or camera video stream
    if FLAGS.video_file != '' or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)


373
if __name__ == '__main__':
374
    paddle.enable_static()
375 376 377 378 379
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
380
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
381
              "'infer_cfg.yml', created by tools/export_model.py."),
382 383 384 385 386
        required=True)
    parser.add_argument(
        "--image_file", type=str, default='', help="Path of image file.")
    parser.add_argument(
        "--video_file", type=str, default='', help="Path of video file.")
387 388 389 390 391
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
392 393 394 395
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
W
wangguanzhong 已提交
396
        help="mode of running(fluid/trt_fp32/trt_fp16)")
397
    parser.add_argument(
398 399 400 401 402 403 404 405 406
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict with GPU.")
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
407 408 409 410 411 412 413 414 415
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")

    FLAGS = parser.parse_args()
416
    print_arguments(FLAGS)
417 418
    if FLAGS.image_file != '' and FLAGS.video_file != '':
        assert "Cannot predict image and video at the same time"
419 420

    main()