infer.py 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
17
import time
18
import yaml
19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
from visualize import visualize_box_mask


def decode_image(im_file, im_info):
    """read rgb image
    Args:
        im_file (str/np.ndarray): path of image/ np.ndarray read by cv2
        im_info (dict): info of image
    Returns:
        im (np.ndarray):  processed image (np.ndarray)
        im_info (dict): info of processed image
    """
    if isinstance(im_file, str):
        with open(im_file, 'rb') as f:
            im_read = f.read()
        data = np.frombuffer(im_read, dtype='uint8')
        im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        im_info['origin_shape'] = im.shape[:2]
        im_info['resize_shape'] = im.shape[:2]
    else:
        im = im_file
        im_info['origin_shape'] = im.shape[:2]
        im_info['resize_shape'] = im.shape[:2]
    return im, im_info


class Resize(object):
    """resize image by target_size and max_size
    Args:
        arch (str): model type
        target_size (int): the target size of image
        max_size (int): the max size of image
        use_cv2 (bool): whether us cv2
        image_shape (list): input shape of model
        interp (int): method of resize
    """

    def __init__(self,
                 arch,
                 target_size,
                 max_size,
                 use_cv2=True,
                 image_shape=None,
                 interp=cv2.INTER_LINEAR):
        self.target_size = target_size
        self.max_size = max_size
        self.image_shape = image_shape,
        self.arch = arch
        self.use_cv2 = use_cv2
        self.interp = interp
        self.scale_set = {'RCNN', 'RetinaNet'}

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im_channel = im.shape[2]
        im_scale_x, im_scale_y = self.generate_scale(im)
        if self.use_cv2:
            im = cv2.resize(
                im,
                None,
                None,
                fx=im_scale_x,
                fy=im_scale_y,
                interpolation=self.interp)
        else:
            resize_w = int(im_scale_x * float(im.shape[1]))
            resize_h = int(im_scale_y * float(im.shape[0]))
            if self.max_size != 0:
                raise TypeError(
                    'If you set max_size to cap the maximum size of image,'
                    'please set use_cv2 to True to resize the image.')
            im = im.astype('uint8')
            im = Image.fromarray(im)
            im = im.resize((int(resize_w), int(resize_h)), self.interp)
            im = np.array(im)

        # padding im when image_shape fixed by infer_cfg.yml
        if self.max_size != 0 and self.image_shape is not None:
            padding_im = np.zeros(
                (self.max_size, self.max_size, im_channel), dtype=np.float32)
            im_h, im_w = im.shape[:2]
            padding_im[:im_h, :im_w, :] = im
            im = padding_im

        if self.arch in self.scale_set:
            im_info['scale'] = im_scale_x
        im_info['resize_shape'] = im.shape[:2]
        return im, im_info

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X 
            im_scale_y: the resize ratio of Y 
        """
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
        if self.max_size != 0 and self.arch in self.scale_set:
            im_size_min = np.min(origin_shape[0:2])
            im_size_max = np.max(origin_shape[0:2])
            im_scale = float(self.target_size) / float(im_size_min)
            if np.round(im_scale * im_size_max) > self.max_size:
                im_scale = float(self.max_size) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            im_scale_x = float(self.target_size) / float(origin_shape[1])
            im_scale_y = float(self.target_size) / float(origin_shape[0])
        return im_scale_x, im_scale_y


class Normalize(object):
    """normalize image
    Args:
        mean (list): im - mean
        std (list): im / std
        is_scale (bool): whether need im / 255
        is_channel_first (bool): if True: image shape is CHW, else: HWC
    """

    def __init__(self, mean, std, is_scale=True, is_channel_first=False):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        self.is_channel_first = is_channel_first

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        im = im.astype(np.float32, copy=False)
        if self.is_channel_first:
            mean = np.array(self.mean)[:, np.newaxis, np.newaxis]
            std = np.array(self.std)[:, np.newaxis, np.newaxis]
        else:
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
        if self.is_scale:
            im = im / 255.0
        im -= mean
        im /= std
        return im, im_info


class Permute(object):
    """permute image
    Args:
        to_bgr (bool): whether convert RGB to BGR 
        channel_first (bool): whether convert HWC to CHW
    """

    def __init__(self, to_bgr=False, channel_first=True):
        self.to_bgr = to_bgr
        self.channel_first = channel_first

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        if self.channel_first:
            im = im.transpose((2, 0, 1)).copy()
        if self.to_bgr:
            im = im[[2, 1, 0], :, :]
        return im, im_info


class PadStride(object):
    """ padding image for model with FPN 
    Args:
        stride (bool): model with FPN need image shape % stride == 0 
    """

    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        coarsest_stride = self.coarsest_stride
        if coarsest_stride == 0:
            return im
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
        im_info['resize_shape'] = padding_im.shape[1:]
        return padding_im, im_info


def create_inputs(im, im_info, model_arch='YOLO'):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = im
    origin_shape = list(im_info['origin_shape'])
    resize_shape = list(im_info['resize_shape'])
    scale = im_info['scale']
    if 'YOLO' in model_arch:
        im_size = np.array([origin_shape]).astype('int32')
        inputs['im_size'] = im_size
    elif 'RetinaNet' in model_arch:
        im_info = np.array([resize_shape + [scale]]).astype('float32')
        inputs['im_info'] = im_info
    elif 'RCNN' in model_arch:
        im_info = np.array([resize_shape + [scale]]).astype('float32')
        im_shape = np.array([origin_shape + [1.]]).astype('float32')
        inputs['im_info'] = im_info
        inputs['im_shape'] = im_shape
    return inputs


class Config():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """
273
    support_models = ['YOLO', 'SSD', 'RetinaNet', 'RCNN', 'Face']
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.use_python_inference = yml_conf['use_python_inference']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.mask_resolution = None
        if 'mask_resolution' in yml_conf:
            self.mask_resolution = yml_conf['mask_resolution']

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in self.support_models:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError(
299 300
            "Unsupported arch: {}, expect SSD, YOLO, RetinaNet, RCNN and Face".
            format(yml_conf['arch']))
301 302 303 304 305 306 307


def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
                   use_gpu=False,
                   min_subgraph_size=3):
308
    """set AnalysisConfig, generate AnalysisPredictor
309 310 311 312 313 314
    Args:
        model_dir (str): root path of __model__ and __params__
        use_gpu (bool): whether use gpu
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
315
        ValueError: predict by TensorRT need use_gpu == True.
316
    """
317
    if not use_gpu and not run_mode == 'fluid':
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
    precision_map = {
        'trt_int8': fluid.core.AnalysisConfig.Precision.Int8,
        'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
        'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
    }
    config = fluid.core.AnalysisConfig(
        os.path.join(model_dir, '__model__'),
        os.path.join(model_dir, '__params__'))
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(100, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
    else:
        config.disable_gpu()

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
339
            workspace_size=1 << 10,
340 341 342 343 344 345 346 347 348 349
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
            use_calib_mode=run_mode == 'trt_int8')

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
350
    # disable feed, fetch OP, needed by zero_copy_run
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    config.switch_use_feed_fetch_ops(False)
    predictor = fluid.core.create_paddle_predictor(config)
    return predictor


def load_executor(model_dir, use_gpu=False):
    if use_gpu:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    program, feed_names, fetch_targets = fluid.io.load_inference_model(
        dirname=model_dir,
        executor=exe,
        model_filename='__model__',
        params_filename='__params__')
    return exe, program, fetch_targets


def visualize(image_file,
              results,
              labels,
              mask_resolution=14,
              output_dir='output/'):
    # visualize the predict result
    im = visualize_box_mask(
        image_file, results, labels, mask_resolution=mask_resolution)
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


class Detector():
    """
    Args:
        model_dir (str): root path of __model__, __params__ and infer_cfg.yml
        use_gpu (bool): whether use gpu
    """

393 394 395 396 397
    def __init__(self,
                 model_dir,
                 use_gpu=False,
                 run_mode='fluid',
                 threshold=0.5):
398 399 400 401 402 403 404
        self.config = Config(model_dir)
        if self.config.use_python_inference:
            self.executor, self.program, self.fecth_targets = load_executor(
                model_dir, use_gpu=use_gpu)
        else:
            self.predictor = load_predictor(
                model_dir,
405
                run_mode=run_mode,
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
                min_subgraph_size=self.config.min_subgraph_size,
                use_gpu=use_gpu)
        self.preprocess_ops = []
        for op_info in self.config.preprocess_infos:
            op_type = op_info.pop('type')
            if op_type == 'Resize':
                op_info['arch'] = self.config.arch
            self.preprocess_ops.append(eval(op_type)(**op_info))

    def preprocess(self, im):
        # process image by preprocess_ops
        im_info = {
            'scale': 1.,
            'origin_shape': None,
            'resize_shape': None,
        }
        im, im_info = decode_image(im, im_info)
        for operator in self.preprocess_ops:
            im, im_info = operator(im, im_info)
        im = np.array((im, )).astype('float32')
        inputs = create_inputs(im, im_info, self.config.arch)
        return inputs, im_info

    def postprocess(self, np_boxes, np_masks, im_info, threshold=0.5):
        # postprocess output of predictor
        results = {}
432
        if self.config.arch in ['SSD', 'Face']:
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            w, h = im_info['origin_shape']
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        expect_boxes = np_boxes[:, 1] > threshold
        np_boxes = np_boxes[expect_boxes, :]
        for box in np_boxes:
            print('class_id:{:d}, confidence:{:.2f},'
                  'left_top:[{:.2f},{:.2f}],'
                  ' right_bottom:[{:.2f},{:.2f}]'.format(
                      int(box[0]), box[1], box[2], box[3], box[4], box[5]))
        results['boxes'] = np_boxes
        if np_masks is not None:
            np_masks = np_masks[expect_boxes, :, :, :]
            results['masks'] = np_masks
        return results

    def predict(self, image, threshold=0.5):
        '''
        Args:
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
        Returns:
457
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
458
                            matix element:[class, score, x_min, y_min, x_max, y_max]
459 460
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape:[N, class_num, mask_resolution, mask_resolution]
461 462 463 464
        '''
        inputs, im_info = self.preprocess(image)
        np_boxes, np_masks = None, None
        if self.config.use_python_inference:
465
            t1 = time.time()
466 467 468 469
            outs = self.executor.run(self.program,
                                     feed=inputs,
                                     fetch_list=self.fecth_targets,
                                     return_numpy=False)
470 471 472 473
            t2 = time.time()
            ms = (t2 - t1) * 1000.0
            print("Inference: {} ms per batch image".format(ms))

474 475
            np_boxes = np.array(outs[0])
            if self.config.mask_resolution is not None:
476
                np_masks = np.array(outs[1])
477 478 479 480 481
        else:
            input_names = self.predictor.get_input_names()
            for i in range(len(inputs)):
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
482
            t1 = time.time()
483
            self.predictor.zero_copy_run()
484 485 486 487
            t2 = time.time()
            ms = (t2 - t1) * 1000.0
            print("Inference: {} ms per batch image".format(ms))

488 489 490 491 492 493 494 495 496 497 498 499
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_tensor(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
            if self.config.mask_resolution is not None:
                masks_tensor = self.predictor.get_output_tensor(output_names[1])
                np_masks = masks_tensor.copy_to_cpu()
        results = self.postprocess(
            np_boxes, np_masks, im_info, threshold=threshold)
        return results


def predict_image():
500 501
    detector = Detector(
        FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode)
502 503 504 505 506 507 508 509 510 511
    results = detector.predict(FLAGS.image_file, FLAGS.threshold)
    visualize(
        FLAGS.image_file,
        results,
        detector.config.labels,
        mask_resolution=detector.config.mask_resolution,
        output_dir=FLAGS.output_dir)


def predict_video():
512 513
    detector = Detector(
        FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode)
514 515 516 517
    capture = cv2.VideoCapture(FLAGS.video_file)
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
K
Kaipeng Deng 已提交
518
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
519 520
    video_name = os.path.split(FLAGS.video_file)[-1]
    if not os.path.exists(FLAGS.output_dir):
521
        os.makedirs(FLAGS.output_dir)
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.config.labels,
            mask_resolution=detector.config.mask_resolution)
        im = np.array(im)
        writer.write(im)
    writer.release()


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'__model__', '__params__', "
549
              "'infer_cfg.yml', created by tools/export_model.py."),
550 551 552 553 554
        required=True)
    parser.add_argument(
        "--image_file", type=str, default='', help="Path of image file.")
    parser.add_argument(
        "--video_file", type=str, default='', help="Path of video file.")
555 556 557 558 559
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
        help="mode of running(fluid/trt_fp32/trt_fp16/trt_int8)")
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    parser.add_argument(
        "--use_gpu", default=False, help="Whether to predict with GPU.")
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")

    FLAGS = parser.parse_args()
    if FLAGS.image_file != '' and FLAGS.video_file != '':
        assert "Cannot predict image and video at the same time"
    if FLAGS.image_file != '':
        predict_image()
    if FLAGS.video_file != '':
        predict_video()