distribute_transpiler.py 82.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127 128 129 130 131 132
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
133
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
134 135 136 137 138 139
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
140
    enable_dc_asgd = False
W
Wu Yi 已提交
141 142
    # supported modes: pserver, nccl2
    mode = "pserver"
143
    print_log = False
G
gongweibao 已提交
144 145


Y
gen rst  
yi.wu 已提交
146
class DistributeTranspiler(object):
Y
yi.wu 已提交
147 148 149 150
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
151
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
152

W
Wu Yi 已提交
153 154 155 156 157 158 159 160 161
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
162 163 164 165

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
166 167 168 169 170 171
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
172 173
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
174
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
175 176 177 178 179 180 181 182
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
183

W
Wu Yi 已提交
184 185 186 187 188 189 190 191 192 193 194
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
195
    """
Y
Yancey1989 已提交
196

G
gongweibao 已提交
197 198 199 200 201 202 203 204 205
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

206 207 208
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
209 210 211
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    def _get_all_remote_sparse_update_op(self, main_program):
        sparse_update_ops = []
        sparse_update_op_types = ["lookup_table"]
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'remote_prefetch') is True and not op.attr(
                        'is_distributed'):
                sparse_update_ops.append(op)
        return sparse_update_ops

    def _update_remote_sparse_update_op(self, param_varname, height_sections,
                                        endpint_map, table_names):
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
                op._set_attr('table_names', table_names)
                op._set_attr('height_sections', height_sections)
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False

264 265 266 267 268
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
269
                  sync_mode=True,
W
Wu Yi 已提交
270 271
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
272
        """
Y
yi.wu 已提交
273 274 275 276 277 278 279
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
280 281
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
282 283
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
284 285 286
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
287
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
288 289
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
290 291 292
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
293 294 295
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
296 297
        if startup_program is None:
            startup_program = default_startup_program()
298
        self.origin_program = program
W
Wu Yi 已提交
299 300
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
301

W
Wu Yi 已提交
302 303 304 305 306 307 308 309 310
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

311 312 313 314 315 316 317
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
318
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
319 320
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
321
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
322
        self.grad_name_to_param_name = dict()
323 324
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
325
            self.grad_name_to_param_name[grad_var.name] = param_var.name
326

327 328 329 330 331 332
        # get all sparse update ops
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
            self.origin_program)
        # use_sparse_update_param_name -> split_height_section
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
333 334 335 336 337 338
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

339
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
340
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
341
        self._init_splited_vars()
342

G
gongweibao 已提交
343
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
344
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
345
        send_vars = []
346 347 348 349 350 351

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
352
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
353

G
gongweibao 已提交
354
        if not self.config.slice_var_up:
355 356
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
357

358
        self.grad_name_to_send_dummy_out = dict()
359
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
360
            eplist = ps_dispatcher.dispatch(splited_vars)
361

G
gongweibao 已提交
362
            if not self.config.slice_var_up:
363 364
                assert (len(splited_vars) == 1)

365
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
366
            if len(splited_vars) == 1:
367
                splited_grad_varname = splited_vars[0].name
368 369
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
370 371 372 373 374 375 376
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
                        grad_varname]
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
377
            elif len(splited_vars) > 1:
378
                orig_var = program.global_block().vars[splited_grad_varname]
379 380
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
381
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
382
                index += 1
Y
Yancey1989 已提交
383 384
            else:
                AssertionError("Can not insert the send op by original "
385
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
386

W
Wu Yi 已提交
387 388
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
389
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
390

W
Wu Yi 已提交
391 392 393 394
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
395
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
396
                index=index + 1,
397
                type="send",
Y
update  
Yancey1989 已提交
398
                inputs={"X": splited_vars},
399
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
400 401
                attrs={
                    "epmap": eplist,
402
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
403 404 405 406
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
407
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
408
                })
Y
update  
Yancey1989 已提交
409 410
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
411 412

        if self.sync_mode:
W
Wu Yi 已提交
413 414
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
415 416 417 418
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
419
            input_deps = list(self.grad_name_to_send_dummy_out.values())
420

Y
Yancey1989 已提交
421 422
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
423
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
424
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
425 426
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
427 428
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
429
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
430
                })
Y
Yancey1989 已提交
431

G
gongweibao 已提交
432
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
433
        recv_vars = []
Y
update  
Yancey1989 已提交
434
        for _, var in enumerate(send_vars):
435
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
436
        ps_dispatcher.reset()
Y
Yancey1989 已提交
437 438
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
439
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
440 441
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
442

Y
Yancey1989 已提交
443
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
444
        all_recv_outputs = []
445
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
446
            eps = []
447
            table_names = []
Y
Yancey1989 已提交
448 449 450
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
451
                table_names.append(var.name)
W
Wu Yi 已提交
452 453 454 455
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
456
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
457
                    self.param_name_to_grad_name[param_varname]]
458

W
Wu Yi 已提交
459 460 461 462 463 464 465 466 467
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
            else:
                all_recv_outputs.extend(splited_var)
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
487

Q
qiaolongfei 已提交
488
        if self.sync_mode:
W
Wu Yi 已提交
489
            # form a WAW dependency
Q
qiaolongfei 已提交
490 491 492
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
493
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
494 495
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
496
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
497 498
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
499

500
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
501 502
            if len(splited_var) <= 1:
                continue
503
            orig_param = program.global_block().vars[param_varname]
504 505 506 507 508 509 510 511 512
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
513

G
gongweibao 已提交
514 515
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

516
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
517 518
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
519
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
520

W
Wu Yi 已提交
521
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
522 523 524 525 526 527
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
528
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
529
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
530
        lr_ops = self._get_lr_ops()
531
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
532 533
        delete_ops(self.origin_program.global_block(), lr_ops)

534 535
        # delete table init op
        if self.has_distributed_lookup_table:
536 537 538
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
539 540
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
541 542 543 544 545
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
546
            table_init_op = table_param_init_op[0]
547 548 549 550 551 552
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
553

554
        self.origin_program.__str__()
G
gongweibao 已提交
555

W
Wu Yi 已提交
556 557 558
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

559
        return self.origin_program
T
typhoonzero 已提交
560

W
Wu Yi 已提交
561
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
562 563 564 565
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
566
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
567
            eplist (list): A list of strings indicating
G
gongweibao 已提交
568 569 570 571

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
572
        startup_program = self.startup_program
G
gongweibao 已提交
573 574 575 576

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
577
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
598
                inputs={"X": []},
G
gongweibao 已提交
599 600 601 602 603 604
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
605 606
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
607 608 609
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
610
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
611 612 613 614 615
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
616
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
617
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
618 619
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
620
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
621
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
622 623 624 625 626 627 628 629 630 631
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
632 633 634 635 636 637 638 639
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
640 641
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
642
        Get parameter server side program.
643

Y
yi.wu 已提交
644 645
        Args:
            endpoint (str): current parameter server endpoint.
646

Y
yi.wu 已提交
647 648
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
649
        """
Y
yi.wu 已提交
650 651 652 653
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
654 655 656
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
657 658
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
659
        pserver_program.random_seed = self.origin_program.random_seed
660
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
661 662 663 664 665 666 667 668
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
669 670 671 672 673
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
674 675 676 677 678 679 680 681 682
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
683
            if self.sync_mode and self.trainer_num > 1:
684
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
685 686 687 688 689 690 691 692 693
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
694

695 696 697
        self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
            endpoint)

Q
qiaolongfei 已提交
698
        # step 3
699
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
700 701 702
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
703
        # step 3.2
T
typhoonzero 已提交
704 705 706 707
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
708 709
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
710
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
711
        # step 3.3
W
Wu Yi 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
730
        # Iterate through the ops, and if an op and the optimize ops
731
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
732
        # append it into the sub program.
T
typhoonzero 已提交
733 734 735

        global_ops = []

Y
wip  
yi.wu 已提交
736 737
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
738
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
739
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
740
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
741
            elif op not in lr_ops:
Q
Qiyang Min 已提交
742
                self._append_pserver_non_opt_ops(block, op)
743 744 745 746 747 748

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
749

Y
Yancey1989 已提交
750
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
751 752 753 754 755 756 757 758
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
759
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
760 761 762

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
763
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
764 765

            # clone ops
Y
Yancey1989 已提交
766 767
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
768
                # clone sub_block of op
Y
Yancey1989 已提交
769
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
770 771

            # reset the block of op
W
Wu Yi 已提交
772
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
773

774
        # append lr decay ops to the child block if exists
775
        lr_ops = self._get_lr_ops()
776 777
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
778
        if len(lr_ops) > 0:
W
Wu Yi 已提交
779
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
780
                pserver_program.num_blocks - 1)
781
            optimize_blocks.append(lr_decay_block)
782
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
783
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
784
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
785 786
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
787

T
typhoonzero 已提交
788
        # append op to the current block
Q
qiaolongfei 已提交
789
        grad_to_block_id = []
Q
qiaolongfei 已提交
790
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
791
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
792
            per_opt_block = pserver_program._create_block(pre_block_idx)
793
            optimize_blocks.append(per_opt_block)
794
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
795
            # append grad merging ops before clip and weight decay
796 797
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
798
            for _, op in enumerate(self.optimize_ops):
799 800 801 802 803
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
804 805 806
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
807 808 809 810 811 812
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
813
                            op not in global_ops:
814 815 816 817 818
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
819

820
        # dedup grad to ids list
W
Wu Yi 已提交
821
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
822
        # append global ops
823
        if global_ops:
W
Wu Yi 已提交
824
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
825
                pserver_program.num_blocks - 1)
826
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
827
            for glb_op in global_ops:
X
Xi Chen 已提交
828
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
829
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
830

831
        # process distributed lookup_table
Q
qiaolongfei 已提交
832
        prefetch_var_name_to_block_id = []
833 834
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
835
            table_opt_block = self._create_table_optimize_block(
836
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
837
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
838
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
839
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
840 841
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
842

T
tangwei12 已提交
843
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
844 845
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
846

847
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
848 849
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
850 851 852 853 854 855
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
856
        attrs = {
857
            "optimize_blocks": optimize_blocks,
858 859 860
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
861
            "grad_to_block_id": grad_to_block_id,
862
        }
T
tangwei12 已提交
863 864

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
865
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
866 867
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
868

T
tangwei12 已提交
869 870 871 872
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
873 874 875 876 877
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
878
            attrs=attrs)
879

T
tangwei12 已提交
880
        # add distributed attrs
881 882
        pserver_program._slice_vars_and_attrs = list(
            self._slice_params_and_optimizes.values())
883

W
Wu Yi 已提交
884
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
885 886
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
887 888
        return pserver_program

W
Wu Yi 已提交
889 890 891 892 893 894
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
895

W
Wu Yi 已提交
896 897 898 899
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
900 901
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
902 903
        return pserver_prog, pserver_startup

904 905
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
906
                            pserver_program=None,
907
                            startup_program=None):
T
typhoonzero 已提交
908
        """
W
Wu Yi 已提交
909 910
        **Deprecated**

T
typhoonzero 已提交
911 912 913
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
914 915 916

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
917 918
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
919
                when initalizing
920

Y
yi.wu 已提交
921 922
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
923
        """
924 925 926
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
927
        if pserver_program != None:
928 929 930
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
931
        if startup_program != None:
932 933 934
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
935

T
typhoonzero 已提交
936
        s_prog = Program()
W
Wu Yi 已提交
937
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
938
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
939 940 941 942 943 944 945 946 947 948 949
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
950
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
951
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
952
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
953 954 955 956
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
957
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
958 959
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
960 961 962 963 964 965 966 967 968 969
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
970 971

            if op_on_pserver:
972 973 974
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
975 976 977
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
978
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
979 980 981 982
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
983
                    attrs=op.all_attrs())
W
Wu Yi 已提交
984 985 986 987 988 989 990 991 992
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
993 994

        # add slice vars
995
        s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
996

T
typhoonzero 已提交
997 998
        return s_prog

T
tangwei12 已提交
999
    def _get_slice_vars_and_attrs(self, endpoint):
1000
        slice_vars_and_attrs = {}
T
tangwei12 已提交
1001
        block_suffix = "block"
1002
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
1003
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
1004
            if not block_name:
1005 1006
                continue

T
tangwei12 已提交
1007
            block_idx = int(block_name.split(block_suffix)[1])
1008 1009
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
1010
            skip_dim0 = 0
1011 1012
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
1013
                skip_dim0 += slice_var.shape[0]
1014
            slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
T
tangwei12 已提交
1015
        return slice_vars_and_attrs
1016

1017 1018
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1058
    def _init_splited_vars(self):
Y
yi.wu 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1082
        if self.config.slice_var_up:
Y
yi.wu 已提交
1083 1084
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1085 1086 1087
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1088
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1089 1090
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1091 1092 1093
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1094 1095 1096 1097
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1098 1099
        assert (len(grad_blocks) == len(param_blocks))

1100
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1101 1102
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1103
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1104 1105 1106 1107
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1108
        # dict(grad_splited_var -> param_splited_var)
1109
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1110 1111 1112
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1113
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1114
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1115 1116

        # create mapping of endpoint -> split var to create pserver side program
1117
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1127
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1128 1129
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1130
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1131
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1132 1133
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1134 1135
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1136 1137 1138 1139 1140 1141

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1142 1143
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1144
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1145 1146 1147
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1148 1149
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1150 1151
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1152 1153 1154
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1155
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1156
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1157 1158

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1159
                    self.all_out_emb_vars.append(out_var)
1160 1161

                    # delete lookup_table_op
1162
                    delete_ops(program.global_block(), [op])
1163 1164 1165
                    # break for loop
                    break

S
seiriosPlus 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1212
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1213
        # 2. add split_ids_op and send_op to send gradient to pservers
1214

1215 1216
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1217
        table_grad_name = grad_var_name(self.table_name)
1218 1219 1220 1221
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1222
                program.global_block()._insert_op(
1223 1224 1225 1226 1227
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1228 1229
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1230
                program.global_block()._insert_op(
1231
                    index=op_index + 2,
1232
                    type="send",
1233
                    inputs={'X': self.trainer_side_table_grad_list},
1234 1235 1236 1237 1238
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1239
                    attrs={
1240
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1241
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1242
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1243 1244 1245 1246 1247
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1248
                    })
1249 1250 1251 1252 1253 1254
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1255
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1281
        return prefetch_var_name_to_block_id
1282 1283

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1284
                                     pre_block_idx, grad_to_block_id):
1285
        # STEP: create table optimize block
1286
        table_opt_block = pserver_program._create_block(pre_block_idx)
1287
        # create table param and grad var in pserver program
1288 1289 1290 1291 1292 1293 1294
        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
        ][0]

Y
Yancey1989 已提交
1295 1296
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1297

T
tangwei12 已提交
1298
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1299 1300
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1301 1302 1303
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1304 1305
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1306
            shape=table_shape,
Y
Yancey1989 已提交
1307 1308 1309
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1310

1311 1312
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1313
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1314
            self.origin_program.global_block().vars[grad_var_name(
1315
                self.table_name)])
1316

1317 1318 1319
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1320

1321 1322 1323
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1324
            pserver_side_table_grad_list = [
1325 1326 1327 1328 1329 1330 1331 1332 1333
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1334
            # append sum op for pserver_side_table_grad_list
1335 1336
            table_opt_block.append_op(
                type="sum",
1337
                inputs={"X": pserver_side_table_grad_list},
1338 1339
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1340 1341
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1342
            origin_grad_name = grad_var.name
1343 1344
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1345 1346
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1347
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1348
            grad_var = pserver_program.global_block()._rename_var(
1349
                origin_grad_name, splited_grad_name)
1350 1351 1352 1353 1354 1355 1356

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1357
        # only support sgd now
1358 1359 1360
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1361
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1362

1363 1364 1365
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1366 1367
        return table_opt_block

T
tangwei12 已提交
1368 1369 1370 1371 1372
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1373
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1374
            name="kLookupTablePath",
T
tangwei12 已提交
1375 1376
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1377

W
Wu Yi 已提交
1378
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1379
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1380 1381 1382 1383
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1384
            attrs={'file_path': "none"})
T
tangwei12 已提交
1385 1386 1387

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1388 1389 1390 1391 1392
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1393
        Create vars for each split.
T
typhoonzero 已提交
1394 1395
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1396 1397 1398 1399
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1400
        Returns:
1401
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1402
                from original var name to each var split.
T
typhoonzero 已提交
1403
        """
1404 1405

        # varname->[(block_id, current_block_size)]
1406
        block_map = collections.OrderedDict()
1407

1408
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1409 1410
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1411
            if varname not in block_map:
T
typhoonzero 已提交
1412
                block_map[varname] = []
1413
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1414

M
minqiyang 已提交
1415
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1416
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1417
            if len(splited) == 1:
1418
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1419
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1420
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1421
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1422 1423 1424 1425 1426
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1427
                continue
T
typhoonzero 已提交
1428
            var_mapping[varname] = []
T
typhoonzero 已提交
1429 1430 1431 1432
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1433

T
typhoonzero 已提交
1434
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1435
                size = block[1]
M
minqiyang 已提交
1436
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1437 1438 1439
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1440
                new_var_name = ""
1441
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1442
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1443
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1444 1445
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1446
                                   (varname, i)
T
typhoonzero 已提交
1447
                var = program.global_block().create_var(
T
typhoonzero 已提交
1448 1449
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1450
                    dtype=orig_var.dtype,
1451
                    type=orig_var.type,
T
typhoonzero 已提交
1452
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1453
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1454
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1455
        return var_mapping
T
done  
typhoonzero 已提交
1456

1457
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1458 1459 1460 1461 1462 1463
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1464
            persistable=persistable)
T
done  
typhoonzero 已提交
1465

Y
Yancey1989 已提交
1466
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1467 1468 1469 1470
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
1471 1472 1473 1474
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1475
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1476 1477 1478 1479
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1480 1481 1482 1483
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1484 1485 1486 1487
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1488
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1489 1490 1491 1492
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1493 1494 1495 1496
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1497 1498 1499
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1500

T
typhoonzero 已提交
1501 1502 1503 1504
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1505
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1518
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1519 1520
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1521 1522
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1523
                return param_shape
1524 1525 1526
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1527 1528 1529
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1530 1531
        elif op_type == "sgd":
            pass
1532 1533 1534 1535
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1536 1537
        return orig_shape

1538 1539
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1540
        orig_var_name = ""
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1551
        else:
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1574
            return None
1575 1576 1577 1578
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1579
        else:
1580
            merged_var_name = orig_varname
1581 1582

        merged_var = pserver_block.vars[merged_var_name]
1583 1584 1585
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1586
            for i in range(self.trainer_num):
1587
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1588
                                   (merged_var_name, i)
1589 1590 1591 1592
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1593 1594
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1595 1596 1597 1598 1599
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1600
        return merged_var
T
typhoonzero 已提交
1601

W
Wu Yi 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1664
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1665
                            grad_to_block_id, origin_program, merged_var):
1666
        program = optimize_block.program
T
typhoonzero 已提交
1667
        pserver_block = program.global_block()
1668
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1679 1680 1681 1682
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1683
        for key in opt_op.input_names:
T
typhoonzero 已提交
1684
            if key == "Grad":
W
Wu Yi 已提交
1685 1686 1687 1688
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1689
            elif key == "Param":
W
Wu Yi 已提交
1690
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1691 1692
                if not param_block:
                    return
T
typhoonzero 已提交
1693
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1694
                    name=param_block.name,
T
typhoonzero 已提交
1695
                    persistable=True,
T
typhoonzero 已提交
1696 1697 1698
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1699
            elif key == "LearningRate":
1700
                # learning rate variable has already be created by non-optimize op,
1701
                # don't create it once again.
1702
                lr_varname = opt_op.input(key)[0]
1703
                if lr_varname in pserver_block.vars:
1704 1705 1706 1707 1708 1709 1710 1711 1712
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1713

T
typhoonzero 已提交
1714
        for key in opt_op.input_names:
1715
            new_shape = None
W
Wu Yi 已提交
1716
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1717
                continue
1718
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1719
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1720
            # update accumulator variable shape
1721 1722
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1723
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1724 1725 1726 1727 1728
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1729

1730 1731 1732 1733 1734 1735 1736
            # var shape been changed
            if new_shape != var.shape:
                slice_var_args = self._slice_params_and_optimizes[
                    param_var.name]
                self._slice_params_and_optimizes[
                    var.name] = [var, slice_var_args[1], tmpvar]

1737
        # change output's ParamOut variable
1738 1739
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1740
        outputs["ParamOut"] = new_inputs["Param"]
1741
        optimize_block.append_op(
T
typhoonzero 已提交
1742 1743
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1744
            outputs=outputs,
G
gongweibao 已提交
1745
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1758
        grad_block = None
M
minqiyang 已提交
1759
        for _, g in six.iteritems(var_dict):
1760
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1761
                # skip per trainer vars
1762
                if g.name.find(".trainer_") == -1:
1763 1764 1765 1766 1767
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1768 1769
        return grad_block

Q
Qiyang Min 已提交
1770 1771 1772
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1773
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1774 1775 1776 1777
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1778
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1779 1780 1781

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1782
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1783 1784 1785 1786
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1787
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1788

Y
Yancey1989 已提交
1789
        return block.append_op(
G
gongweibao 已提交
1790
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1791 1792

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1793
        program = optimize_block.program
1794
        # Append the ops for parameters that do not need to be optimized/updated
1795 1796
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1797
        for key, varlist in six.iteritems(inputs):
1798 1799
            if not isinstance(varlist, list):
                varlist = [varlist]
1800 1801 1802
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1803
                # for inputs/outputs
1804
                grad_block = self._get_pserver_grad_param_var(
1805 1806
                    var, program.global_block().vars)
                if grad_block:
1807
                    varlist[i] = grad_block
1808
                elif var.name not in program.global_block().vars:
1809 1810 1811 1812 1813
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1814

1815 1816
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1817
        for key, varlist in six.iteritems(outputs):
1818 1819
            if not isinstance(varlist, list):
                varlist = [varlist]
1820 1821 1822
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1823 1824
                    var, program.global_block().vars)
                if grad_block:
1825
                    varlist[i] = grad_block
1826
                elif var.name not in program.global_block().vars:
1827 1828 1829 1830 1831
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1832

Y
Yancey1989 已提交
1833
        return optimize_block.append_op(
T
typhoonzero 已提交
1834
            type=opt_op.type,
T
typhoonzero 已提交
1835 1836
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1837
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1838

1839 1840 1841 1842
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1843
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1844
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1845 1846 1847 1848 1849 1850
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1851 1852
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1853 1854 1855 1856 1857 1858
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1859
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1860
        if "Param" in op.input_names and \
T
tangwei12 已提交
1861
                "LearningRate" in op.input_names:
1862 1863 1864 1865 1866 1867 1868
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1869
        if op.input("Param")[0] in param_names:
1870 1871 1872
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1873
                param = op.input("Param")[0]
T
typhoonzero 已提交
1874
                if same_or_split_var(n, param) and n != param:
1875 1876 1877
                    return True
            return False

T
typhoonzero 已提交
1878
    def _get_input_map_from_op(self, varmap, op):
1879
        """Returns a dict from op input name to the vars in varmap."""
1880
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1892
        """Returns a dict from op output name to the vars in varmap."""
1893
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1903 1904

    def _get_lr_ops(self):
1905 1906 1907
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1908 1909 1910 1911
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1912 1913 1914 1915 1916
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1917 1918 1919 1920
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1921
            if self._is_optimizer_op(op):
1922 1923 1924 1925
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1926
        block = self.origin_program.global_block()
1927 1928 1929 1930 1931
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1932

1933 1934 1935 1936 1937
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1938
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1939 1940 1941 1942 1943 1944
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1945 1946
                    # we only need to append op for once
                    break
1947
        return lr_ops
Y
Yancey1989 已提交
1948

W
Wu Yi 已提交
1949 1950 1951 1952 1953
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1954 1955
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1956 1957 1958
            return True
        return False

Y
Yancey1989 已提交
1959
    def _get_optimize_pass(self):
1960
        """
1961
        Get optimizer operators, parameters and gradients from origin_program
1962 1963 1964 1965
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1966 1967 1968
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1969 1970
        # tmp set to dedup
        optimize_params = set()
1971
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1972
        for op in block.ops:
W
Wu Yi 已提交
1973
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1974
                opt_ops.append(op)
1975 1976 1977 1978 1979 1980
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1981 1982
                        params_grads.append([
                            origin_var_dict[param_name],
1983
                            origin_var_dict[grad_name]
1984
                        ])
Y
Yancey1989 已提交
1985 1986 1987
            else:
                pass
        return opt_ops, params_grads