Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
adfaf9a6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
adfaf9a6
编写于
7月 02, 2018
作者:
W
Wu Yi
提交者:
GitHub
7月 02, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
make transpiler test reliable (#11848)
* make transpiler test reliable * add more * follow comments
上级
58560622
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
235 addition
and
184 deletion
+235
-184
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+222
-25
python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py
...ddle/fluid/tests/unittests/test_simple_dist_transpiler.py
+0
-80
python/paddle/fluid/tests/unittests/transpiler_test.py
python/paddle/fluid/tests/unittests/transpiler_test.py
+0
-73
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+13
-6
未找到文件。
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
adfaf9a6
...
...
@@ -15,51 +15,248 @@
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
import
traceback
from
transpiler_test
import
TranspilerTest
class
TestDistTranspiler
(
TranspilerTest
):
class
TranspilerTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
current_pserver_ep
=
"127.0.0.1:6174"
self
.
trainer_id
=
0
self
.
trainers
=
2
self
.
pservers
=
2
# NOTE: we do not actually bind this port
self
.
pserver_eps
=
"127.0.0.1:6174,127.0.0.1:6175"
self
.
pserver1_ep
=
"127.0.0.1:6174"
self
.
pserver2_ep
=
"127.0.0.1:6175"
self
.
slice_var_up
=
True
self
.
sync_mode
=
True
self
.
transpiler
=
None
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
get_main_program
(
self
):
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
self
.
net_conf
()
self
.
origin_prog
=
main
.
clone
()
return
main
def
get_trainer
(
self
):
t
=
self
.
_transpiler_instance
()
return
t
.
get_trainer_program
()
def
get_pserver
(
self
,
ep
):
t
=
self
.
_transpiler_instance
()
pserver
=
t
.
get_pserver_program
(
ep
)
startup
=
t
.
get_startup_program
(
ep
,
pserver
)
return
pserver
,
startup
def
_transpiler_instance
(
self
):
if
not
self
.
transpiler
:
main
=
self
.
get_main_program
()
self
.
transpiler
=
fluid
.
DistributeTranspiler
()
self
.
transpiler
.
transpile
(
self
.
trainer_id
,
program
=
main
,
pservers
=
self
.
pserver_eps
,
trainers
=
self
.
trainers
,
slice_var_up
=
self
.
slice_var_up
,
sync_mode
=
self
.
sync_mode
)
return
self
.
transpiler
class
TestBasicModel
(
TranspilerTest
):
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver2
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
)
trainer
=
self
.
get_trainer
()
pserver
,
startup
=
self
.
get_pserver
(
self
.
current_pserver_ep
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
self
.
get_expect_trainer_ops
())
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
[
'mul'
,
'elementwise_add'
,
'elementwise_sub'
,
'square'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'square_grad'
,
'elementwise_sub_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'split_byref'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
])
self
.
assertEqual
(
len
(
pserver
.
blocks
),
3
)
# block0: listen_and_serv
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
0
].
ops
],
[
"listen_and_serv"
])
# block2: optimize pass
# block
1~
2: optimize pass
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"sgd"
])
# confirm startup program
self
.
assertEqual
([
op
.
type
for
op
in
startup
.
global_block
().
ops
],
[
"fill_constant"
,
"fill_constant"
,
"uniform_random"
,
"uniform_random"
])
self
.
assertEqual
([
op
.
type
for
op
in
startup
.
global_block
().
ops
],
[
"fill_constant"
,
"fill_constant"
,
"uniform_random"
])
# the variable #fc_w will be split into two blocks
fc_w_var
=
startup
.
global_block
().
var
(
"fc_w.block1"
)
self
.
assertEqual
(
fc_w_var
.
shape
,
(
500
,
1000
))
# all parameters should be optimized on pserver
pserver_params
=
[]
for
prog
in
[
pserver
,
pserver2
]:
for
blk
in
prog
.
blocks
:
for
op
in
blk
.
ops
:
if
"Param"
in
op
.
input_names
:
param_name
=
op
.
input
(
"Param"
)[
0
]
is_block_idx
=
param_name
.
find
(
".block"
)
if
is_block_idx
!=
-
1
:
origin_param_name
=
param_name
[:
is_block_idx
]
else
:
origin_param_name
=
param_name
pserver_params
.
append
(
origin_param_name
)
trainer_params
=
[]
for
op
in
self
.
origin_prog
.
global_block
().
ops
:
if
"Param"
in
op
.
input_names
:
trainer_params
.
append
(
op
.
input
(
"Param"
)[
0
])
self
.
assertEqual
(
set
(
pserver_params
),
set
(
trainer_params
))
class
TestNoSliceVar
(
TranspilerTest
):
def
setUp
(
self
):
super
(
TestNoSliceVar
,
self
).
setUp
()
self
.
slice_var_up
=
False
def
test_transpiler
(
self
):
_
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
_
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
)
if
startup
.
global_block
().
vars
.
has_key
(
"fc_w"
):
fc_w_var
=
startup
.
global_block
().
vars
[
"fc_w"
]
elif
startup2
.
global_block
().
vars
.
has_key
(
"fc_w"
):
fc_w_var
=
startup2
.
global_block
().
vars
[
"fc_w"
]
self
.
assertEqual
(
fc_w_var
.
shape
,
(
1000
,
1000
))
def
get_expect_trainer_ops
(
self
):
trainer
=
fluid
.
Program
()
with
fluid
.
program_guard
(
trainer
):
optimize_ops
,
params_grads
=
self
.
net_conf
()
class
TestLRDecay
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
1.0
,
decay_steps
=
2100
,
decay_rate
=
0.1
,
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
pserver
.
blocks
),
4
)
lr_decay_ops
=
[
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
]
self
.
assertEqual
(
lr_decay_ops
,
[
"increment"
,
"cast"
,
"fill_constant"
,
"elementwise_div"
,
"floor"
,
"fill_constant"
,
"elementwise_pow"
,
"fill_constant"
,
"elementwise_mul"
])
class
TestLRDecayConditional
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
([
10000
,
20000
],
[
1.0
,
0.5
,
1.0
]))
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
serv_op
=
pserver
.
blocks
[
0
].
ops
[
0
]
sub_blocks
=
[]
optimize_blocks
=
[]
for
b
in
serv_op
.
attrs
[
"optimize_blocks"
]:
optimize_blocks
.
append
(
b
.
idx
)
for
b
in
pserver
.
blocks
:
if
b
.
idx
not
in
optimize_blocks
:
sub_blocks
.
append
(
b
.
idx
)
self
.
assertEqual
(
len
(
pserver
.
blocks
),
7
)
lr_decay_ops
=
[
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
]
self
.
assertEqual
(
lr_decay_ops
,
[
"increment"
,
"cast"
,
"fill_constant"
,
"fill_constant"
,
"less_than"
,
"logical_not"
,
"conditional_block"
,
"fill_constant"
,
"fill_constant"
,
"less_than"
,
"logical_not"
,
"logical_and"
,
"logical_and"
,
"conditional_block"
,
"fill_constant"
,
"conditional_block"
])
# test the condition blocks
for
b
in
sub_blocks
:
if
b
==
0
:
continue
block
=
pserver
.
blocks
[
b
]
self
.
assertEqual
([
op
.
type
for
op
in
block
.
ops
],
[
"assign"
])
class
TestL2Decay
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(),
gradient_clip
=
fluid
.
clip
.
GradientClipByValue
(
0.1
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
pserver
.
blocks
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"clip"
,
"sgd"
])
self
.
assertEqual
(
[
op
.
type
for
op
in
pserver
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"clip"
,
"scale"
,
"elementwise_add"
,
"sgd"
])
# TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer
delete_ops
(
trainer
.
global_block
(),
optimize_ops
)
ops
=
[
op
.
type
for
op
in
trainer
.
global_block
().
ops
]
+
[
"split_byref"
,
"send"
,
"send_barrier"
,
"recv"
,
"recv"
,
"fetch_barrier"
,
"concat"
]
ops
.
insert
(
ops
.
index
(
"elementwise_add_grad"
)
+
1
,
"send"
)
return
ops
# FIXME(typhoonzero): need to add test for async case:
# see https://github.com/PaddlePaddle/Paddle/issues/11691
class
TestAsyncSGD
(
TranspilerTest
):
pass
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py
已删除
100644 → 0
浏览文件 @
58560622
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
from
transpiler_test
import
TranspilerTest
class
TestSimpleDistTranspiler
(
TranspilerTest
):
def
setUp
(
self
):
self
.
current_pserver_ep
=
"127.0.0.1:6175"
def
test_simple_transpiler
(
self
):
np
.
random
.
seed
(
1
)
trainer
=
self
.
get_trainer
()
pserver
,
startup
=
self
.
get_pserver
(
self
.
current_pserver_ep
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
self
.
get_expect_trainer_ops
())
self
.
assertEqual
(
len
(
pserver
.
blocks
),
2
)
# block0: listen_and_serv
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
0
].
ops
],
[
"listen_and_serv"
])
# block1: optimize pass
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"sgd"
])
# confirm startup program
self
.
assertEqual
([
op
.
type
for
op
in
startup
.
global_block
().
ops
],
[
"fill_constant"
,
"uniform_random"
,
"uniform_random"
])
# the variable #fc_w will NOT be splited
fc_w_var
=
startup
.
global_block
().
var
(
"fc_w@GRAD"
)
self
.
assertEqual
(
fc_w_var
.
shape
,
(
1000
,
1000
))
fc_w_var
=
startup
.
global_block
().
var
(
"fc_w@GRAD.trainer_0"
)
self
.
assertEqual
(
fc_w_var
.
shape
,
(
1000
,
1000
))
def
get_expect_trainer_ops
(
self
):
trainer
=
fluid
.
Program
()
with
fluid
.
program_guard
(
trainer
):
optimize_ops
,
params_grads
=
self
.
net_conf
()
delete_ops
(
trainer
.
global_block
(),
optimize_ops
)
ops
=
[
op
.
type
for
op
in
trainer
.
global_block
().
ops
]
+
[
"send"
,
"send_barrier"
,
"recv"
,
"recv"
,
"fetch_barrier"
]
ops
.
insert
(
ops
.
index
(
"elementwise_add_grad"
)
+
1
,
"send"
)
return
ops
def
_transpiler_instance
(
self
):
main
=
self
.
get_main_program
()
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
self
.
trainer_id
,
program
=
main
,
pservers
=
self
.
pserver_eps
,
trainers
=
self
.
trainers
,
slice_var_up
=
False
)
return
t
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/transpiler_test.py
已删除
100644 → 0
浏览文件 @
58560622
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.layers
as
layers
class
TranspilerTest
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
self
):
self
.
trainer_id
=
0
self
.
trainers
=
2
self
.
pservers
=
2
self
.
pserver_eps
=
"127.0.0.1:6174,127.0.0.1:6175"
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
optimize_ops
,
params_grads
=
sgd_optimizer
.
minimize
(
avg_cost
)
return
optimize_ops
,
params_grads
def
get_main_program
(
self
):
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
self
.
net_conf
()
return
main
def
get_trainer
(
self
):
return
self
.
_transpiler_instance
().
get_trainer_program
()
def
get_pserver
(
self
,
ep
):
t
=
self
.
_transpiler_instance
()
pserver
=
t
.
get_pserver_program
(
ep
)
startup
=
t
.
get_startup_program
(
ep
,
pserver
)
return
pserver
,
startup
def
_transpiler_instance
(
self
):
main
=
self
.
get_main_program
()
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
self
.
trainer_id
,
program
=
main
,
pservers
=
self
.
pserver_eps
,
trainers
=
self
.
trainers
)
return
t
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
adfaf9a6
...
...
@@ -455,6 +455,8 @@ class DistributeTranspiler(object):
__append_optimize_op__
(
op
,
per_opt_block
,
grad_to_block_id
,
merged_var
,
lr_ops
)
# dedup grad to ids list
grad_to_block_id
=
list
(
set
(
grad_to_block_id
))
# append global ops
if
global_ops
:
opt_state_block
=
pserver_program
.
create_block
(
...
...
@@ -960,8 +962,6 @@ class DistributeTranspiler(object):
if
not
block_map
.
has_key
(
varname
):
block_map
[
varname
]
=
[]
block_map
[
varname
].
append
((
long
(
offset
),
long
(
size
)))
# Do not remove this important debug message:
print
(
"block map: %s"
%
block_map
)
for
varname
,
splited
in
block_map
.
iteritems
():
orig_var
=
program
.
global_block
().
var
(
varname
)
...
...
@@ -1401,6 +1401,16 @@ class DistributeTranspiler(object):
break
return
lr_ops
def
_is_opt_role_op
(
self
,
op
):
# NOTE: depend on oprole to find out whether this op is for
# optimize
op_maker
=
core
.
op_proto_and_checker_maker
optimize_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attrs
and
\
int
(
op
.
attrs
[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
return
True
return
False
def
_get_optimize_pass
(
self
):
"""
Get optimizer operators, paramters and gradients from origin_program
...
...
@@ -1413,10 +1423,7 @@ class DistributeTranspiler(object):
params_grads
=
[]
origin_var_dict
=
self
.
origin_program
.
global_block
().
vars
for
op
in
block
.
ops
:
# NOTE(Yancey1989): we can not use op role to distinguish an optimizer op
# or not, because all ops in optimizer sub-graph would
# sign the optimizer op role
if
self
.
_is_optimizer_op
(
op
):
if
self
.
_is_opt_role_op
(
op
):
opt_ops
.
append
(
op
)
# HACK(wuyi): if we find grad vars from input of optimize
# ops, we may get the output of clip op. Use syntax "@GRAD"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录