keypoint_metrics.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
import json
from collections import defaultdict
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from ..modeling.keypoint_utils import oks_nms
Z
zhiboniu 已提交
22
from scipy.io import loadmat, savemat
23

Z
zhiboniu 已提交
24
__all__ = ['KeyPointTopDownCOCOEval', 'KeyPointTopDownMPIIEval']
25 26 27


class KeyPointTopDownCOCOEval(object):
Z
zhiboniu 已提交
28 29 30 31 32 33
    '''
    Adapted from
        https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
        Copyright (c) Microsoft, under the MIT License.
    '''

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def __init__(self,
                 anno_file,
                 num_samples,
                 num_joints,
                 output_eval,
                 iou_type='keypoints',
                 in_vis_thre=0.2,
                 oks_thre=0.9):
        super(KeyPointTopDownCOCOEval, self).__init__()
        self.coco = COCO(anno_file)
        self.num_samples = num_samples
        self.num_joints = num_joints
        self.iou_type = iou_type
        self.in_vis_thre = in_vis_thre
        self.oks_thre = oks_thre
        self.output_eval = output_eval
        self.res_file = os.path.join(output_eval, "keypoints_results.json")
        self.reset()

    def reset(self):
        self.results = {
            'all_preds': np.zeros(
                (self.num_samples, self.num_joints, 3), dtype=np.float32),
            'all_boxes': np.zeros((self.num_samples, 6)),
            'image_path': []
        }
        self.eval_results = {}
        self.idx = 0

    def update(self, inputs, outputs):
Z
zhiboniu 已提交
64 65
        kpts, _ = outputs['keypoint'][0]

66 67
        num_images = inputs['image'].shape[0]
        self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
Z
zhiboniu 已提交
68
                                  3] = kpts[:, :, 0:3]
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        self.results['all_boxes'][self.idx:self.idx + num_images, 0:2] = inputs[
            'center'].numpy()[:, 0:2]
        self.results['all_boxes'][self.idx:self.idx + num_images, 2:4] = inputs[
            'scale'].numpy()[:, 0:2]
        self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
            inputs['scale'].numpy() * 200, 1)
        self.results['all_boxes'][self.idx:self.idx + num_images,
                                  5] = np.squeeze(inputs['score'].numpy())
        self.results['image_path'].extend(inputs['im_id'].numpy())

        self.idx += num_images

    def _write_coco_keypoint_results(self, keypoints):
        data_pack = [{
            'cat_id': 1,
            'cls': 'person',
            'ann_type': 'keypoints',
            'keypoints': keypoints
        }]
        results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
        if not os.path.exists(self.output_eval):
            os.makedirs(self.output_eval)
        with open(self.res_file, 'w') as f:
            json.dump(results, f, sort_keys=True, indent=4)
        try:
            json.load(open(self.res_file))
        except Exception:
            content = []
            with open(self.res_file, 'r') as f:
                for line in f:
                    content.append(line)
            content[-1] = ']'
            with open(self.res_file, 'w') as f:
                for c in content:
                    f.write(c)

    def _coco_keypoint_results_one_category_kernel(self, data_pack):
        cat_id = data_pack['cat_id']
        keypoints = data_pack['keypoints']
        cat_results = []

        for img_kpts in keypoints:
            if len(img_kpts) == 0:
                continue

            _key_points = np.array(
                [img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
            _key_points = _key_points.reshape(_key_points.shape[0], -1)

            result = [{
                'image_id': img_kpts[k]['image'],
                'category_id': cat_id,
Z
zhiboniu 已提交
121
                'keypoints': _key_points[k].tolist(),
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                'score': img_kpts[k]['score'],
                'center': list(img_kpts[k]['center']),
                'scale': list(img_kpts[k]['scale'])
            } for k in range(len(img_kpts))]
            cat_results.extend(result)

        return cat_results

    def get_final_results(self, preds, all_boxes, img_path):
        _kpts = []
        for idx, kpt in enumerate(preds):
            _kpts.append({
                'keypoints': kpt,
                'center': all_boxes[idx][0:2],
                'scale': all_boxes[idx][2:4],
                'area': all_boxes[idx][4],
                'score': all_boxes[idx][5],
                'image': int(img_path[idx])
            })
        # image x person x (keypoints)
        kpts = defaultdict(list)
        for kpt in _kpts:
            kpts[kpt['image']].append(kpt)

        # rescoring and oks nms
        num_joints = preds.shape[1]
        in_vis_thre = self.in_vis_thre
        oks_thre = self.oks_thre
        oks_nmsed_kpts = []
        for img in kpts.keys():
            img_kpts = kpts[img]
            for n_p in img_kpts:
                box_score = n_p['score']
                kpt_score = 0
                valid_num = 0
                for n_jt in range(0, num_joints):
                    t_s = n_p['keypoints'][n_jt][2]
                    if t_s > in_vis_thre:
                        kpt_score = kpt_score + t_s
                        valid_num = valid_num + 1
                if valid_num != 0:
                    kpt_score = kpt_score / valid_num
                # rescoring
                n_p['score'] = kpt_score * box_score

            keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
                           oks_thre)

            if len(keep) == 0:
                oks_nmsed_kpts.append(img_kpts)
            else:
                oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])

        self._write_coco_keypoint_results(oks_nmsed_kpts)

    def accumulate(self):
        self.get_final_results(self.results['all_preds'],
                               self.results['all_boxes'],
                               self.results['image_path'])
        coco_dt = self.coco.loadRes(self.res_file)
        coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
        coco_eval.params.useSegm = None
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

        keypoint_stats = []
        for ind in range(len(coco_eval.stats)):
            keypoint_stats.append((coco_eval.stats[ind]))
        self.eval_results['keypoint'] = keypoint_stats

    def log(self):
        stats_names = [
            'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
            'AR .75', 'AR (M)', 'AR (L)'
        ]
        num_values = len(stats_names)
        print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
        print('|---' * (num_values + 1) + '|')

        print(' '.join([
            '| {:.3f}'.format(value) for value in self.eval_results['keypoint']
        ]) + ' |')

    def get_results(self):
        return self.eval_results
Z
zhiboniu 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365


class KeyPointTopDownMPIIEval(object):
    def __init__(self,
                 anno_file,
                 num_samples,
                 num_joints,
                 output_eval,
                 oks_thre=0.9):
        super(KeyPointTopDownMPIIEval, self).__init__()
        self.ann_file = anno_file
        self.reset()

    def reset(self):
        self.results = []
        self.eval_results = {}
        self.idx = 0

    def update(self, inputs, outputs):
        kpts, _ = outputs['keypoint'][0]

        num_images = inputs['image'].shape[0]
        results = {}
        results['preds'] = kpts[:, :, 0:3]
        results['boxes'] = np.zeros((num_images, 6))
        results['boxes'][:, 0:2] = inputs['center'].numpy()[:, 0:2]
        results['boxes'][:, 2:4] = inputs['scale'].numpy()[:, 0:2]
        results['boxes'][:, 4] = np.prod(inputs['scale'].numpy() * 200, 1)
        results['boxes'][:, 5] = np.squeeze(inputs['score'].numpy())
        results['image_path'] = inputs['image_file']

        self.results.append(results)

    def accumulate(self):
        self.eval_results = self.evaluate(self.results)

    def log(self):
        for item, value in self.eval_results.items():
            print("{} : {}".format(item, value))

    def get_results(self):
        return self.eval_results

    def evaluate(self, outputs, savepath=None):
        """Evaluate PCKh for MPII dataset. Adapted from
        https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
        Copyright (c) Microsoft, under the MIT License.

        Args:
            outputs(list(preds, boxes)):

                * preds (np.ndarray[N,K,3]): The first two dimensions are
                  coordinates, score is the third dimension of the array.
                * boxes (np.ndarray[N,6]): [center[0], center[1], scale[0]
                  , scale[1],area, score]

        Returns:
            dict: PCKh for each joint
        """

        kpts = []
        for output in outputs:
            preds = output['preds']
            batch_size = preds.shape[0]
            for i in range(batch_size):
                kpts.append({'keypoints': preds[i]})

        preds = np.stack([kpt['keypoints'] for kpt in kpts])

        # convert 0-based index to 1-based index,
        # and get the first two dimensions.
        preds = preds[..., :2] + 1.0

        if savepath is not None:
            pred_file = os.path.join(savepath, 'pred.mat')
            savemat(pred_file, mdict={'preds': preds})

        SC_BIAS = 0.6
        threshold = 0.5

        gt_file = os.path.join(
            os.path.dirname(self.ann_file), 'mpii_gt_val.mat')
        gt_dict = loadmat(gt_file)
        dataset_joints = gt_dict['dataset_joints']
        jnt_missing = gt_dict['jnt_missing']
        pos_gt_src = gt_dict['pos_gt_src']
        headboxes_src = gt_dict['headboxes_src']

        pos_pred_src = np.transpose(preds, [1, 2, 0])

        head = np.where(dataset_joints == 'head')[1][0]
        lsho = np.where(dataset_joints == 'lsho')[1][0]
        lelb = np.where(dataset_joints == 'lelb')[1][0]
        lwri = np.where(dataset_joints == 'lwri')[1][0]
        lhip = np.where(dataset_joints == 'lhip')[1][0]
        lkne = np.where(dataset_joints == 'lkne')[1][0]
        lank = np.where(dataset_joints == 'lank')[1][0]

        rsho = np.where(dataset_joints == 'rsho')[1][0]
        relb = np.where(dataset_joints == 'relb')[1][0]
        rwri = np.where(dataset_joints == 'rwri')[1][0]
        rkne = np.where(dataset_joints == 'rkne')[1][0]
        rank = np.where(dataset_joints == 'rank')[1][0]
        rhip = np.where(dataset_joints == 'rhip')[1][0]

        jnt_visible = 1 - jnt_missing
        uv_error = pos_pred_src - pos_gt_src
        uv_err = np.linalg.norm(uv_error, axis=1)
        headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :]
        headsizes = np.linalg.norm(headsizes, axis=0)
        headsizes *= SC_BIAS
        scale = headsizes * np.ones((len(uv_err), 1), dtype=np.float32)
        scaled_uv_err = uv_err / scale
        scaled_uv_err = scaled_uv_err * jnt_visible
        jnt_count = np.sum(jnt_visible, axis=1)
        less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
        PCKh = 100. * np.sum(less_than_threshold, axis=1) / jnt_count

        # save
        rng = np.arange(0, 0.5 + 0.01, 0.01)
        pckAll = np.zeros((len(rng), 16), dtype=np.float32)

        for r, threshold in enumerate(rng):
            less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
            pckAll[r, :] = 100. * np.sum(less_than_threshold,
                                         axis=1) / jnt_count

        PCKh = np.ma.array(PCKh, mask=False)
        PCKh.mask[6:8] = True

        jnt_count = np.ma.array(jnt_count, mask=False)
        jnt_count.mask[6:8] = True
        jnt_ratio = jnt_count / np.sum(jnt_count).astype(np.float64)

        name_value = [  #noqa
            ('Head', PCKh[head]),
            ('Shoulder', 0.5 * (PCKh[lsho] + PCKh[rsho])),
            ('Elbow', 0.5 * (PCKh[lelb] + PCKh[relb])),
            ('Wrist', 0.5 * (PCKh[lwri] + PCKh[rwri])),
            ('Hip', 0.5 * (PCKh[lhip] + PCKh[rhip])),
            ('Knee', 0.5 * (PCKh[lkne] + PCKh[rkne])),
            ('Ankle', 0.5 * (PCKh[lank] + PCKh[rank])),
            ('PCKh', np.sum(PCKh * jnt_ratio)),
            ('PCKh@0.1', np.sum(pckAll[11, :] * jnt_ratio))
        ]
        name_value = OrderedDict(name_value)

        return name_value

    def _sort_and_unique_bboxes(self, kpts, key='bbox_id'):
        """sort kpts and remove the repeated ones."""
        kpts = sorted(kpts, key=lambda x: x[key])
        num = len(kpts)
        for i in range(num - 1, 0, -1):
            if kpts[i][key] == kpts[i - 1][key]:
                del kpts[i]

        return kpts