paddle_inference_api_impl.cc 9.4 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "paddle/contrib/inference/paddle_inference_api_impl.h"

namespace paddle {
namespace {

// Timer for timer
class Timer {
W
Wu Yi 已提交
31
 public:
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  double start;
  double startu;
  void tic() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    start = tp.tv_sec;
    startu = tp.tv_usec;
  }
  double toc() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    double used_time_ms =
        (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
    return used_time_ms;
  }
};

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

T
tensor-tang 已提交
57 58
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
59 60
  VLOG(3) << "Predictor::init()";

Y
Yan Chunwei 已提交
61
  if (config_.use_gpu) {
X
Xin Pan 已提交
62 63 64 65
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
66 67 68
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
69 70 71 72 73
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.model_dir);
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
92

X
Xin Pan 已提交
93
  ctx_ = executor_->Prepare(*inference_program_, 0);
94 95
  executor_->CreateVariables(
      *inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
96

X
Xin Pan 已提交
97 98 99 100 101 102
  // Get the feed_target_names and fetch_target_names
  feed_target_names_ = inference_program_->GetFeedTargetNames();
  fetch_target_names_ = inference_program_->GetFetchTargetNames();
  return true;
}

103 104 105 106 107 108 109
NativePaddlePredictor::~NativePaddlePredictor() {
  if (sub_scope_) {
    PADDLE_ENFORCE_NOT_NULL(scope_, "Should have parent scope!");
    scope_->DeleteScope(sub_scope_);
  }
};

Y
Yan Chunwei 已提交
110 111
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
                                std::vector<PaddleTensor> *output_data) {
X
Xin Pan 已提交
112 113 114 115
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
116 117
  std::map<std::string, const framework::LoDTensor *> feed_targets;
  std::vector<framework::LoDTensor> feeds;
X
Xin Pan 已提交
118 119 120 121 122
  if (!SetFeed(inputs, &feeds)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
123
    VLOG(4) << "setting " << i << "-th target";
X
Xin Pan 已提交
124 125 126
    feed_targets[feed_target_names_[i]] = &feeds[i];
  }
  // get fetch variable
127 128
  std::map<std::string, framework::LoDTensor *> fetch_targets;
  std::vector<framework::LoDTensor> fetchs;
X
Xin Pan 已提交
129 130 131 132 133 134
  fetchs.resize(fetch_target_names_.size());
  for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
    fetch_targets[fetch_target_names_[i]] = &fetchs[i];
  }
  // Run the inference program
  // if share variables, we need not create variables
135
  VLOG(4) << "Run prepared context";
136 137 138 139 140 141
  executor_->RunPreparedContext(
      ctx_.get(),
      sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
      &feed_targets,
      &fetch_targets,
      false /* don't create variable eatch time */);
142
  VLOG(4) << "Finish prepared context";
X
Xin Pan 已提交
143
  if (!GetFetch(fetchs, output_data)) {
144
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
145 146 147 148 149 150
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
151
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
152
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
153 154
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

155
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
156
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
157 158
    return nullptr;
  }
159 160
  // fix manylinux compile error.
  return std::move(cls);
X
Xin Pan 已提交
161 162
}

Y
Yan Chunwei 已提交
163 164
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                    std::vector<framework::LoDTensor> *feeds) {
X
Xin Pan 已提交
165 166 167 168 169 170
  VLOG(3) << "Predictor::set_feed";
  if (inputs.size() != feed_target_names_.size()) {
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
171 172
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
173 174
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
175
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
176
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
177
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
178 179 180 181 182 183 184
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr),
185 186
                inputs[i].data.data(),
                inputs[i].data.length());
X
Xin Pan 已提交
187 188 189 190 191
    feeds->push_back(input);
  }
  return true;
}

Y
Yan Chunwei 已提交
192
bool NativePaddlePredictor::GetFetch(
193
    const std::vector<framework::LoDTensor> &fetchs,
X
Xin Pan 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    std::vector<PaddleTensor> *outputs) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetchs.size());
  for (size_t i = 0; i < fetchs.size(); ++i) {
    // TODO(panyx0718): Support fetch of other types.
    if (fetchs[i].type() != typeid(float)) {
      LOG(ERROR) << "only support fetching float now.";
      return false;
    }
    std::vector<int> shape;
    auto dims_i = fetchs[i].dims();
    auto lod = fetchs[i].lod();
    const float *output_ptr = fetchs[i].data<float>();
    // const int64_t* output_ptr = fetchs[i].data<int64_t>();
    auto num = fetchs[i].numel();
    std::vector<float> data;
    if (0 == lod.size()) {
      std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
      for (int j = 0; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    } else {
      // for batch detection
      // image[0] -> output[0] shape {145, 6}
      // image[1] -> output[1] shape {176, 6}
      // then,
      // the batch output shape {321, 6}
      // the lod {{0, 145, 321}}
      // so we should append output[0] to {176, 6}
      size_t max_dim = 0;
      for (size_t j = 1; j < lod[0].size(); j++) {
        max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
      }
      size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
      if (max_dim > 0) {
        data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
      }
      for (size_t j = 1; j < lod[0].size(); j++) {
        size_t start = lod[0][j - 1] * common_dim;
        size_t end = lod[0][j] * common_dim;
        if (end > start) {
          std::copy(output_ptr + start,
                    output_ptr + end,
                    data.begin() + (j - 1) * max_dim * common_dim);
        }
      }
      shape.push_back(lod[0].size() - 1);
      shape.push_back(max_dim);
      for (int j = 1; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    }

    outputs->at(i).shape = shape;
248 249 250 251 252
    auto &buffer = outputs->at(i).data;
    if (buffer.empty() || buffer.length() < sizeof(float) * data.size()) {
      buffer.Resize(sizeof(float) * data.size());
    }
    std::memcpy(buffer.data(), data.data(), buffer.length());
X
Xin Pan 已提交
253 254 255 256 257 258
    outputs->at(i).dtype = PaddleDType::FLOAT32;
    // TODO(panyx0718): support other types? fill tensor name? avoid a copy.
  }
  return true;
}

259
template <>
Y
Yan Chunwei 已提交
260
std::unique_ptr<PaddlePredictor>
Y
Yan Chunwei 已提交
261
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
Y
Yan Chunwei 已提交
262 263 264 265
    const NativeConfig &config) {
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
266 267 268
    PADDLE_ENFORCE_GT(
        config.fraction_of_gpu_memory,
        0.f,
Y
Yan Chunwei 已提交
269
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
270
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
271 272 273 274 275 276 277 278 279 280
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
281 282
  }

Y
Yan Chunwei 已提交
283
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
284
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
285 286
    return nullptr;
  }
287
  return std::move(predictor);
X
Xin Pan 已提交
288 289 290
}

}  // namespace paddle