paddle_inference_api_impl.cc 9.2 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "paddle/contrib/inference/paddle_inference_api_impl.h"

namespace paddle {
namespace {

// Timer for timer
class Timer {
W
Wu Yi 已提交
31
 public:
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  double start;
  double startu;
  void tic() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    start = tp.tv_sec;
    startu = tp.tv_usec;
  }
  double toc() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    double used_time_ms =
        (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
    return used_time_ms;
  }
};

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

57
bool NativePaddlePredictor::Init(std::shared_ptr<framework::Scope> scope) {
X
Xin Pan 已提交
58 59
  VLOG(3) << "Predictor::init()";

Y
Yan Chunwei 已提交
60
  if (config_.use_gpu) {
X
Xin Pan 已提交
61 62 63 64
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
65 66 67 68 69 70 71 72
  if (scope) {
    scope_ = scope;
    sub_scope_ = &(scope->NewScope());
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.model_dir);
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
  ctx_ = executor_->Prepare(*inference_program_, 0);
92 93
  executor_->CreateVariables(
      *inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
94

X
Xin Pan 已提交
95 96 97 98 99 100
  // Get the feed_target_names and fetch_target_names
  feed_target_names_ = inference_program_->GetFeedTargetNames();
  fetch_target_names_ = inference_program_->GetFetchTargetNames();
  return true;
}

101 102 103 104 105 106 107
NativePaddlePredictor::~NativePaddlePredictor() {
  if (sub_scope_) {
    PADDLE_ENFORCE_NOT_NULL(scope_, "Should have parent scope!");
    scope_->DeleteScope(sub_scope_);
  }
};

Y
Yan Chunwei 已提交
108 109
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
                                std::vector<PaddleTensor> *output_data) {
X
Xin Pan 已提交
110 111 112 113
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
114 115
  std::map<std::string, const framework::LoDTensor *> feed_targets;
  std::vector<framework::LoDTensor> feeds;
X
Xin Pan 已提交
116 117 118 119 120 121 122 123
  if (!SetFeed(inputs, &feeds)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
    feed_targets[feed_target_names_[i]] = &feeds[i];
  }
  // get fetch variable
124 125
  std::map<std::string, framework::LoDTensor *> fetch_targets;
  std::vector<framework::LoDTensor> fetchs;
X
Xin Pan 已提交
126 127 128 129 130 131
  fetchs.resize(fetch_target_names_.size());
  for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
    fetch_targets[fetch_target_names_[i]] = &fetchs[i];
  }
  // Run the inference program
  // if share variables, we need not create variables
132 133 134 135 136 137
  executor_->RunPreparedContext(
      ctx_.get(),
      sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
      &feed_targets,
      &fetch_targets,
      false /* don't create variable eatch time */);
X
Xin Pan 已提交
138 139 140 141 142 143 144 145
  if (!GetFetch(fetchs, output_data)) {
    LOG(ERROR) << "fail to get fetchs";
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
146
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
147
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
148 149
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

150
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
151
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
152 153
    return nullptr;
  }
154 155
  // fix manylinux compile error.
  return std::move(cls);
X
Xin Pan 已提交
156 157
}

Y
Yan Chunwei 已提交
158 159
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                    std::vector<framework::LoDTensor> *feeds) {
X
Xin Pan 已提交
160 161 162 163 164 165
  VLOG(3) << "Predictor::set_feed";
  if (inputs.size() != feed_target_names_.size()) {
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
166 167
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
168 169
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
170
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
171
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
172
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr),
                inputs[i].data.data,
                inputs[i].data.length);
    feeds->push_back(input);
  }
  return true;
}

Y
Yan Chunwei 已提交
187
bool NativePaddlePredictor::GetFetch(
188
    const std::vector<framework::LoDTensor> &fetchs,
X
Xin Pan 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    std::vector<PaddleTensor> *outputs) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetchs.size());
  for (size_t i = 0; i < fetchs.size(); ++i) {
    // TODO(panyx0718): Support fetch of other types.
    if (fetchs[i].type() != typeid(float)) {
      LOG(ERROR) << "only support fetching float now.";
      return false;
    }
    std::vector<int> shape;
    auto dims_i = fetchs[i].dims();
    auto lod = fetchs[i].lod();
    const float *output_ptr = fetchs[i].data<float>();
    // const int64_t* output_ptr = fetchs[i].data<int64_t>();
    auto num = fetchs[i].numel();
    std::vector<float> data;
    if (0 == lod.size()) {
      std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
      for (int j = 0; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    } else {
      // for batch detection
      // image[0] -> output[0] shape {145, 6}
      // image[1] -> output[1] shape {176, 6}
      // then,
      // the batch output shape {321, 6}
      // the lod {{0, 145, 321}}
      // so we should append output[0] to {176, 6}
      size_t max_dim = 0;
      for (size_t j = 1; j < lod[0].size(); j++) {
        max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
      }
      size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
      if (max_dim > 0) {
        data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
      }
      for (size_t j = 1; j < lod[0].size(); j++) {
        size_t start = lod[0][j - 1] * common_dim;
        size_t end = lod[0][j] * common_dim;
        if (end > start) {
          std::copy(output_ptr + start,
                    output_ptr + end,
                    data.begin() + (j - 1) * max_dim * common_dim);
        }
      }
      shape.push_back(lod[0].size() - 1);
      shape.push_back(max_dim);
      for (int j = 1; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    }

    outputs->at(i).shape = shape;
    outputs->at(i).data.length = sizeof(float) * data.size();
    outputs->at(i).data.data = malloc(outputs->at(i).data.length);
    std::memcpy(
        outputs->at(i).data.data, data.data(), outputs->at(i).data.length);
    outputs->at(i).dtype = PaddleDType::FLOAT32;
    // TODO(panyx0718): support other types? fill tensor name? avoid a copy.
  }
  return true;
}

253
template <>
Y
Yan Chunwei 已提交
254
std::unique_ptr<PaddlePredictor>
Y
Yan Chunwei 已提交
255
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
Y
Yan Chunwei 已提交
256 257 258 259
    const NativeConfig &config) {
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
260 261 262
    PADDLE_ENFORCE_GT(
        config.fraction_of_gpu_memory,
        0.f,
Y
Yan Chunwei 已提交
263
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
264
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
265 266 267 268 269 270 271 272 273 274
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
275 276
  }

Y
Yan Chunwei 已提交
277 278
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init()) {
X
Xin Pan 已提交
279 280
    return nullptr;
  }
281
  return std::move(predictor);
X
Xin Pan 已提交
282 283 284
}

}  // namespace paddle