paddle_inference_api_impl.cc 9.3 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "paddle/contrib/inference/paddle_inference_api_impl.h"

namespace paddle {
namespace {

// Timer for timer
class Timer {
W
Wu Yi 已提交
31
 public:
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  double start;
  double startu;
  void tic() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    start = tp.tv_sec;
    startu = tp.tv_usec;
  }
  double toc() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    double used_time_ms =
        (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
    return used_time_ms;
  }
};

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

T
tensor-tang 已提交
57 58
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
59 60
  VLOG(3) << "Predictor::init()";

Y
Yan Chunwei 已提交
61
  if (config_.use_gpu) {
X
Xin Pan 已提交
62 63 64 65
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
66 67 68
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
69 70 71 72 73
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }

X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  executor_.reset(new paddle::framework::Executor(place_));

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.model_dir);
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
  ctx_ = executor_->Prepare(*inference_program_, 0);
93 94
  executor_->CreateVariables(
      *inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
95

X
Xin Pan 已提交
96 97 98 99 100 101
  // Get the feed_target_names and fetch_target_names
  feed_target_names_ = inference_program_->GetFeedTargetNames();
  fetch_target_names_ = inference_program_->GetFetchTargetNames();
  return true;
}

102 103 104 105 106 107 108
NativePaddlePredictor::~NativePaddlePredictor() {
  if (sub_scope_) {
    PADDLE_ENFORCE_NOT_NULL(scope_, "Should have parent scope!");
    scope_->DeleteScope(sub_scope_);
  }
};

Y
Yan Chunwei 已提交
109 110
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
                                std::vector<PaddleTensor> *output_data) {
X
Xin Pan 已提交
111 112 113 114
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
115 116
  std::map<std::string, const framework::LoDTensor *> feed_targets;
  std::vector<framework::LoDTensor> feeds;
X
Xin Pan 已提交
117 118 119 120 121 122 123 124
  if (!SetFeed(inputs, &feeds)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
    feed_targets[feed_target_names_[i]] = &feeds[i];
  }
  // get fetch variable
125 126
  std::map<std::string, framework::LoDTensor *> fetch_targets;
  std::vector<framework::LoDTensor> fetchs;
X
Xin Pan 已提交
127 128 129 130 131 132
  fetchs.resize(fetch_target_names_.size());
  for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
    fetch_targets[fetch_target_names_[i]] = &fetchs[i];
  }
  // Run the inference program
  // if share variables, we need not create variables
133 134 135 136 137 138
  executor_->RunPreparedContext(
      ctx_.get(),
      sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
      &feed_targets,
      &fetch_targets,
      false /* don't create variable eatch time */);
X
Xin Pan 已提交
139 140 141 142 143 144 145 146
  if (!GetFetch(fetchs, output_data)) {
    LOG(ERROR) << "fail to get fetchs";
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
147
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
148
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
149 150
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

151
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
152
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
153 154
    return nullptr;
  }
155 156
  // fix manylinux compile error.
  return std::move(cls);
X
Xin Pan 已提交
157 158
}

Y
Yan Chunwei 已提交
159 160
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                    std::vector<framework::LoDTensor> *feeds) {
X
Xin Pan 已提交
161 162 163 164 165 166
  VLOG(3) << "Predictor::set_feed";
  if (inputs.size() != feed_target_names_.size()) {
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
167 168
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
169 170
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
171
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
172
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
173
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
174 175 176 177 178 179 180
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr),
181 182
                inputs[i].data.data(),
                inputs[i].data.length());
X
Xin Pan 已提交
183 184 185 186 187
    feeds->push_back(input);
  }
  return true;
}

Y
Yan Chunwei 已提交
188
bool NativePaddlePredictor::GetFetch(
189
    const std::vector<framework::LoDTensor> &fetchs,
X
Xin Pan 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    std::vector<PaddleTensor> *outputs) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetchs.size());
  for (size_t i = 0; i < fetchs.size(); ++i) {
    // TODO(panyx0718): Support fetch of other types.
    if (fetchs[i].type() != typeid(float)) {
      LOG(ERROR) << "only support fetching float now.";
      return false;
    }
    std::vector<int> shape;
    auto dims_i = fetchs[i].dims();
    auto lod = fetchs[i].lod();
    const float *output_ptr = fetchs[i].data<float>();
    // const int64_t* output_ptr = fetchs[i].data<int64_t>();
    auto num = fetchs[i].numel();
    std::vector<float> data;
    if (0 == lod.size()) {
      std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
      for (int j = 0; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    } else {
      // for batch detection
      // image[0] -> output[0] shape {145, 6}
      // image[1] -> output[1] shape {176, 6}
      // then,
      // the batch output shape {321, 6}
      // the lod {{0, 145, 321}}
      // so we should append output[0] to {176, 6}
      size_t max_dim = 0;
      for (size_t j = 1; j < lod[0].size(); j++) {
        max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
      }
      size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
      if (max_dim > 0) {
        data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
      }
      for (size_t j = 1; j < lod[0].size(); j++) {
        size_t start = lod[0][j - 1] * common_dim;
        size_t end = lod[0][j] * common_dim;
        if (end > start) {
          std::copy(output_ptr + start,
                    output_ptr + end,
                    data.begin() + (j - 1) * max_dim * common_dim);
        }
      }
      shape.push_back(lod[0].size() - 1);
      shape.push_back(max_dim);
      for (int j = 1; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    }

    outputs->at(i).shape = shape;
244 245 246 247 248
    auto &buffer = outputs->at(i).data;
    if (buffer.empty() || buffer.length() < sizeof(float) * data.size()) {
      buffer.Resize(sizeof(float) * data.size());
    }
    std::memcpy(buffer.data(), data.data(), buffer.length());
X
Xin Pan 已提交
249 250 251 252 253 254
    outputs->at(i).dtype = PaddleDType::FLOAT32;
    // TODO(panyx0718): support other types? fill tensor name? avoid a copy.
  }
  return true;
}

255
template <>
Y
Yan Chunwei 已提交
256
std::unique_ptr<PaddlePredictor>
Y
Yan Chunwei 已提交
257
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
Y
Yan Chunwei 已提交
258 259 260 261
    const NativeConfig &config) {
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
262 263 264
    PADDLE_ENFORCE_GT(
        config.fraction_of_gpu_memory,
        0.f,
Y
Yan Chunwei 已提交
265
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
266
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
267 268 269 270 271 272 273 274 275 276
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
                         num2str<float>(config.fraction_of_gpu_memory);
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
277 278
  }

Y
Yan Chunwei 已提交
279
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
280
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
281 282
    return nullptr;
  }
283
  return std::move(predictor);
X
Xin Pan 已提交
284 285 286
}

}  // namespace paddle