analysis_predictor.cc 32.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "paddle/fluid/framework/feed_fetch_method.h"
24
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26
#include "paddle/fluid/framework/ir/pass.h"
27
#include "paddle/fluid/framework/naive_executor.h"
28
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/framework/var_type_traits.h"
30
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
32
#include "paddle/fluid/inference/api/helper.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/memory/memcpy.h"
37
#include "paddle/fluid/platform/cpu_helper.h"
38
#include "paddle/fluid/platform/gpu_info.h"
39
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
40 41
#include "paddle/fluid/platform/profiler.h"

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
46 47
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
48
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
49 50
#endif

N
nhzlx 已提交
51
#if PADDLE_WITH_ANAKIN
52
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
N
nhzlx 已提交
53
#endif
54

T
tensor-tang 已提交
55
DECLARE_bool(profile);
56 57 58

namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
78
bool AnalysisPredictor::Init(
79 80
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
81
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
82 83 84
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
85 86
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
87 88 89
    platform::EnableProfiler(tracking_device);
  }

90
  // no matter with or without MKLDNN
L
luotao1 已提交
91
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
92

93 94 95 96 97 98 99 100 101 102 103 104 105
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
106
  }
107 108 109 110 111 112 113 114 115

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
116
  if (parent_scope) {
117 118 119
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
120
    scope_ = parent_scope;
121
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
122
  } else {
Z
Zhaolong Xing 已提交
123 124 125 126 127
    if (config_.use_gpu_) {
      paddle::framework::InitDevices(false, {config_.device_id_});
    } else {
      paddle::framework::InitDevices(false, {});
    }
Y
Yan Chunwei 已提交
128
    scope_.reset(new paddle::framework::Scope());
129
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
130
  }
131 132 133 134 135
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
136 137
  if (!program) {
    if (!LoadProgramDesc()) return false;
138

139 140 141 142 143 144 145 146 147
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

148 149 150
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
151
    if (config_.ir_optim()) {
152 153 154 155 156 157 158
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
159
  } else {
160 161
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
162 163
    inference_program_ = program;
  }
M
Michal Gallus 已提交
164

165 166 167 168 169
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
170
  if (config_.use_gpu_) {
171
    status_use_gpu_ = true;
172
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
173 174 175 176 177 178 179 180
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
181
                     config_.use_feed_fetch_ops_);
182

183
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
184

185 186 187
  return true;
}

L
luotao1 已提交
188
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
189 190 191 192 193 194 195
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

196 197 198
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
199
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
M
minqiyang 已提交
200
  VLOG(3) << "Predictor::predict";
201 202 203 204
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
205
  PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr.");
206 207
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
208
    return false;
209
  }
M
Michal Gallus 已提交
210

211 212 213
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
214

215 216 217 218
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
219
  }
Y
Yan Chunwei 已提交
220 221 222 223 224 225

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
226
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
227

Y
Yan Chunwei 已提交
228 229 230 231 232
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
233 234 235
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
236
  tensor_array_batch_cleaner_.ResetNoTensorVars();
237 238 239 240 241

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);

242 243
  return true;
}
244

245 246
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
247
  VLOG(3) << "Predictor::set_feed";
248 249 250 251 252 253 254 255 256 257 258 259 260 261
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
262
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
263
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
264
      input_ptr = input.mutable_data<float>(ddim, place_);
265 266
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
267 268 269 270 271
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

L
liuwei1031 已提交
272 273 274
    PADDLE_ENFORCE_NOT_NULL(input_ptr);
    PADDLE_ENFORCE_NOT_NULL(inputs[i].data.data());

275 276 277 278 279 280
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
281 282 283 284
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
285 286 287
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
288
                   inputs[i].data.length(), dev_ctx->stream());
289 290 291 292
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
293 294 295 296 297 298 299
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
300
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
301 302
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
303 304
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
305 306
      }
      idx = feed_names_[name];
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
337
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
338 339 340
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
341 342 343 344 345
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
346
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
347
    if (type == framework::proto::VarType::FP32) {
348 349
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
350
    } else if (type == framework::proto::VarType::INT64) {
351 352
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
353 354 355
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
356
    } else {
357
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
358 359
    }
  }
Y
Yan Chunwei 已提交
360 361
  return true;
}
362

363
void AnalysisPredictor::PrepareArgument() {
364 365
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
366
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
367 368 369
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
370
  argument_.SetModelFromMemory(config_.model_from_memory_);
371
  argument_.SetEngineOptInfo(config_.engine_opt_info_);
Y
Yan Chunwei 已提交
372
  // Analyze inference_program
373 374
  argument_.SetUseAnakin(config_.anakin_engine_enabled());
  argument_.SetPredictorID(predictor_id_);
375 376
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
377 378
  } else {
    PADDLE_ENFORCE(
379
        !config_.params_file().empty(),
T
Tao Luo 已提交
380
        "Either model_dir or (param_file, prog_file) should be set.");
381
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
382
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
383

384 385
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
386
  }
387

388
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
389
    LOG(INFO) << "TensorRT subgraph engine is enabled";
390 391 392
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
393
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
394
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
395
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
396
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
W
Wojciech Uss 已提交
397
  }
398

399
  if (config_.anakin_engine_enabled()) {
400
    argument_.SetAnakinMaxBatchSize(config_.anakin_max_batchsize_);
401
    argument_.SetAnakinMaxInputShape(config_.anakin_max_input_shape_);
402
    argument_.SetAnakinMinSubgraphSize(config_.anakin_min_subgraph_size_);
403 404 405 406
    argument_.SetAnakinPrecisionMode(config_.anakin_precision_mode_);
    argument_.SetAnakinAutoConfigLayout(config_.anakin_auto_config_layout_);
    argument_.SetAnakinPassesFilter(config_.anakin_passes_filter_);
    argument_.SetAnakinOpsFilter(config_.anakin_ops_filter_);
407 408 409
    LOG(INFO) << "Anakin subgraph engine is enabled";
  }

410
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
411
    LOG(INFO) << "MKLDNN is enabled";
412 413 414
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

415 416 417 418 419 420 421 422 423 424
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

425
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
426 427 428 429
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
430
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
431
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
432
  argument_.SetScopeNotOwned(scope_.get());
433 434 435 436 437 438 439
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  status_program_optimized_ = true;

  PrepareArgument();
440 441 442 443 444
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
445
  inference_program_.reset(
446
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
447 448 449 450
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
451
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
452
}
453 454

template <>
455 456
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
457
  VLOG(3) << "create AnalysisConfig";
458 459
  PADDLE_ENFORCE(config.is_valid(),
                 "Note: Each config can only be used for one predictor.");
460
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
461
    // 1. GPU memory
462
    PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f);
463 464
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
465
    std::vector<std::string> flags;
466 467 468 469 470 471 472 473 474 475 476

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
477 478
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
479
                         std::to_string(fraction_of_gpu_memory);
480
      flags.push_back(flag);
Z
Zhaolong Xing 已提交
481 482
      flags.push_back("--selected_gpus=" +
                      std::to_string(config.gpu_device_id()));
M
minqiyang 已提交
483
      VLOG(3) << "set flag: " << flag;
484 485 486 487 488
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
489 490
  // Each config can only be used for one predictor.
  config.SetInValid();
491 492 493 494 495 496 497
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
498 499
    return nullptr;
  }
500

G
Gabor Buella 已提交
501
  return predictor;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

516
void AnalysisPredictor::PrepareFeedFetch() {
517 518
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
519 520 521 522 523 524 525 526
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
527
      idx2feeds_[idx] = op->Output("Out")[0];
528 529
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
530 531
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
532
      }
Y
Yan Chunwei 已提交
533
      fetches_[idx] = op;
N
nhzlx 已提交
534
      idx2fetches_[idx] = op->Input("X")[0];
535 536 537 538
    }
  }
}

539 540 541 542 543 544 545 546
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

563 564 565 566 567 568 569
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
570 571 572 573 574 575 576
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

577 578 579 580 581 582 583 584 585 586
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
587 588 589 590 591 592
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
593 594 595 596
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
597
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
598
  executor_->Run();
Y
Yan Chunwei 已提交
599
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
600
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
601
  tensor_array_batch_cleaner_.ResetTensorArray();
602 603 604 605 606

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);

607 608 609 610 611
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
612
  std::string filename;
613 614 615
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
616 617 618
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
619
    filename = config_.prog_file();
620
  } else {
621
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
622 623 624 625
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
626
    LOG(ERROR) << string::Sprintf(
627 628
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
629 630
    return false;
  }
631 632 633

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
634
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
635 636 637
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
638 639
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
640 641 642 643 644 645 646 647
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
648
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
649
  }
650 651 652 653 654 655 656
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

678
      if (!config_.params_file().empty()) {
679 680 681 682 683 684
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
685
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
686 687 688 689 690
        op->CheckAttrs();
      }
    }
  }

691
  if (!config_.params_file().empty()) {
692 693 694 695 696 697
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
698
    op->SetAttr("file_path", {config_.params_file()});
699 700 701 702
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
703
  framework::NaiveExecutor e(place_);
704 705 706 707
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

708 709
  return true;
}
710

N
nhzlx 已提交
711
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
712 713 714 715 716 717 718 719
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
720
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
721 722 723 724
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
725 726
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
727
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
728
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
729 730
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
731 732 733
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
734

N
nhzlx 已提交
735
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
736 737 738
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
739

N
nhzlx 已提交
740 741 742 743 744
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
745
      std::string calibration_table_data_path =
N
nhzlx 已提交
746 747 748 749
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
750 751 752 753 754

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
755 756 757 758
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
759
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
760 761
  return true;
}
N
nhzlx 已提交
762
#endif
N
nhzlx 已提交
763

764
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
765
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
766
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
767 768
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
769 770
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
771
#endif
772 773 774 775 776 777 778
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
779

780 781 782 783 784 785 786
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif

Y
Yan Chunwei 已提交
787 788 789 790 791 792
  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
793 794
}

795
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
796
  std::lock_guard<std::mutex> lk(clone_mutex_);
797 798 799 800 801
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
849
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
850 851 852
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
853 854
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
855 856 857 858 859 860 861
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

862
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
863 864 865
  return inference_program_->Proto()->SerializeAsString();
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
905
template <>
906 907 908 909
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
910 911
}

912
}  // namespace paddle
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
935
USE_TRT_CONVERTER(split);
936 937
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
938
USE_TRT_CONVERTER(leaky_relu);
939
#endif
940

N
nhzlx 已提交
941
#if PADDLE_WITH_ANAKIN
942
USE_ANAKIN_CONVERTER(mul);
943 944
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
945
USE_ANAKIN_CONVERTER(conv2d_fusion);
946 947 948 949 950 951 952
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
953
USE_ANAKIN_CONVERTER(elementwise_mul);
954 955 956 957 958 959 960
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);
USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);
961 962
USE_ANAKIN_CONVERTER(dropout);
USE_ANAKIN_CONVERTER(sum);
N
nhzlx 已提交
963
USE_ANAKIN_CONVERTER(prior_box);
964 965 966 967 968
USE_ANAKIN_CONVERTER(leaky_relu);
USE_ANAKIN_CONVERTER(affine_channel);
USE_ANAKIN_CONVERTER(relu6);
USE_ANAKIN_CONVERTER(swish);
USE_ANAKIN_CONVERTER(shuffle_channel);
N
nhzlx 已提交
969
#endif