analysis_predictor.cc 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20 21
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
25
#include "paddle/fluid/framework/ir/pass.h"
26
#include "paddle/fluid/framework/naive_executor.h"
27
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/framework/var_type_traits.h"
29
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
31
#include "paddle/fluid/inference/api/helper.h"
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/memory/memcpy.h"
36
#include "paddle/fluid/platform/cpu_helper.h"
37
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

Y
Yan Chunwei 已提交
40 41
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
42
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
N
nhzlx 已提交
43

Y
Yan Chunwei 已提交
44 45
#endif

46 47
#include "paddle/fluid/inference/anakin/convert/op_converter.h"

T
tensor-tang 已提交
48
DECLARE_bool(profile);
49 50 51

namespace paddle {

N
nhzlx 已提交
52
using inference::Singleton;
N
nhzlx 已提交
53
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
54
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
55 56
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
57
#endif
58

59 60 61 62
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
63 64
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
65 66 67 68 69 70
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
71
bool AnalysisPredictor::Init(
72 73
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
74
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
75 76 77
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
78 79
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
80 81 82
    platform::EnableProfiler(tracking_device);
  }

83
  // no matter with or without MKLDNN
L
luotao1 已提交
84
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
85

86 87 88 89 90 91 92 93 94 95 96 97 98
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
99
  }
100 101 102 103 104 105 106 107 108

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
109
  if (parent_scope) {
110 111 112
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
113
    scope_ = parent_scope;
114
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
115 116 117
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
118
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
119
  }
120 121 122 123 124
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
125 126
  if (!program) {
    if (!LoadProgramDesc()) return false;
127

128 129 130 131 132 133 134 135 136
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

137 138 139
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
140
    if (config_.ir_optim()) {
141 142 143 144 145 146 147
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
148
  } else {
149 150
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
151 152
    inference_program_ = program;
  }
M
Michal Gallus 已提交
153

154 155 156 157 158
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
159
  if (config_.use_gpu_) {
160
    status_use_gpu_ = true;
161
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
162 163 164 165 166 167 168 169
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
170
                     config_.use_feed_fetch_ops_);
171

172
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
173

174 175 176
  return true;
}

L
luotao1 已提交
177
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
178 179 180 181 182 183 184
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

185 186 187
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
L
luotao1 已提交
188 189 190
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
M
minqiyang 已提交
191
  VLOG(3) << "Predictor::predict";
192 193 194 195 196 197
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
198
    return false;
199
  }
M
Michal Gallus 已提交
200

201 202 203
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
204

205 206 207 208
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
209
  }
Y
Yan Chunwei 已提交
210 211 212 213 214 215

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
216
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
217

Y
Yan Chunwei 已提交
218 219 220 221 222 223 224
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
225 226
  return true;
}
227

228 229
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
230
  VLOG(3) << "Predictor::set_feed";
231 232 233 234 235 236 237 238 239 240 241 242 243 244
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
245
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
246
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
247
      input_ptr = input.mutable_data<float>(ddim, place_);
248 249
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
250 251 252 253 254
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

255 256 257 258 259 260
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
261 262 263 264
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
265 266 267
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
268
                   inputs[i].data.length(), dev_ctx->stream());
269 270 271 272
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
273 274 275 276 277 278 279
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
280
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
281 282
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
283 284
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
285 286
      }
      idx = feed_names_[name];
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
317
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
318 319 320
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
321 322 323 324 325
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
326
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
327
    if (type == framework::proto::VarType::FP32) {
328 329
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
330
    } else if (type == framework::proto::VarType::INT64) {
331 332
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
333 334 335
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
336
    } else {
337
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
338 339
    }
  }
Y
Yan Chunwei 已提交
340 341
  return true;
}
342

343
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
344
void AnalysisPredictor::OptimizeInferenceProgram() {
345 346
  status_program_optimized_ = true;

347 348
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
349
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
350 351 352
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
353
  argument_.SetModelFromMemory(config_.model_from_memory_);
354
  argument_.SetEngineOptInfo(config_.engine_opt_info_);
Y
Yan Chunwei 已提交
355
  // Analyze inference_program
356 357
  argument_.SetUseAnakin(config_.anakin_engine_enabled());
  argument_.SetPredictorID(predictor_id_);
358 359
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
360 361
  } else {
    PADDLE_ENFORCE(
362
        !config_.params_file().empty(),
T
Tao Luo 已提交
363
        "Either model_dir or (param_file, prog_file) should be set.");
364
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
365
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
366

367 368
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
369
  }
370

371
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
372
    LOG(INFO) << "TensorRT subgraph engine is enabled";
373 374 375
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
376
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
377
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
378
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
W
Wojciech Uss 已提交
379
  }
380

381
  if (config_.use_gpu() && config_.anakin_engine_enabled()) {
382
    argument_.SetAnakinMaxBatchSize(config_.anakin_max_batchsize_);
383
    argument_.SetAnakinMaxInputShape(config_.anakin_max_input_shape_);
384 385 386
    LOG(INFO) << "Anakin subgraph engine is enabled";
  }

387
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
388
    LOG(INFO) << "MKLDNN is enabled";
389 390 391
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

392
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
393 394 395 396
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
397
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
398
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
399
  argument_.SetScopeNotOwned(scope_.get());
400 401 402 403 404
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
405
  inference_program_.reset(
406
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
407
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
408
}
409 410

template <>
411 412
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
413
  VLOG(3) << "create AnalysisConfig";
414
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
415
    // 1. GPU memory
416
    PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f);
417 418
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
419
    std::vector<std::string> flags;
420 421 422 423 424 425 426 427 428 429 430

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
431 432
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
433
                         std::to_string(fraction_of_gpu_memory);
434
      flags.push_back(flag);
M
minqiyang 已提交
435
      VLOG(3) << "set flag: " << flag;
436 437 438 439 440
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
441
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
442 443
    return nullptr;
  }
G
Gabor Buella 已提交
444
  return predictor;
445 446
}

447
void AnalysisPredictor::PrepareFeedFetch() {
448 449
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
450 451 452 453 454 455 456 457
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
458
      idx2feeds_[idx] = op->Output("Out")[0];
459 460
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
461 462
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
463
      }
Y
Yan Chunwei 已提交
464
      fetches_[idx] = op;
N
nhzlx 已提交
465
      idx2fetches_[idx] = op->Input("X")[0];
466 467 468 469
    }
  }
}

470 471 472 473 474 475 476 477
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

494 495 496 497 498 499 500
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
501 502 503 504 505 506 507
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

508 509 510 511 512 513 514 515 516 517
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
518 519 520 521 522 523
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
524 525 526 527 528
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
529
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
530
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
531
  tensor_array_batch_cleaner_.ResetTensorArray();
532 533 534 535 536
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
537
  std::string filename;
538 539 540
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
541 542 543
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
544
    filename = config_.prog_file();
545
  } else {
546
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
547 548 549 550
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
551
    LOG(ERROR) << string::Sprintf(
552 553
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
554 555
    return false;
  }
556 557 558

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
559
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
560 561 562
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
563 564
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
565 566 567 568 569 570 571 572
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
573
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
574
  }
575 576 577 578 579 580 581
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

603
      if (!config_.params_file().empty()) {
604 605 606 607 608 609
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
610
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
611 612 613 614 615
        op->CheckAttrs();
      }
    }
  }

616
  if (!config_.params_file().empty()) {
617 618 619 620 621 622
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
623
    op->SetAttr("file_path", {config_.params_file()});
624 625 626 627
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
628
  framework::NaiveExecutor e(place_);
629 630 631 632
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

633 634
  return true;
}
635

N
nhzlx 已提交
636
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
637 638 639 640 641 642 643 644
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
645
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
646 647 648 649
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
650 651
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
652
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
653
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
654 655
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
656 657 658
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
659

N
nhzlx 已提交
660
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
661 662 663
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
664

N
nhzlx 已提交
665 666 667 668 669
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
670
      std::string calibration_table_data_path =
N
nhzlx 已提交
671 672 673 674
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
675 676 677 678 679

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
680 681 682 683
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
684
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
685 686
  return true;
}
N
nhzlx 已提交
687
#endif
N
nhzlx 已提交
688

689
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
690
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
691
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
692 693
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
694 695
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
696
#endif
697 698 699 700 701 702 703
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
704 705 706 707 708 709 710

  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
711 712
}

713
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
714
  std::lock_guard<std::mutex> lk(clone_mutex_);
715 716 717 718 719
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
767
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
768 769 770
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
771 772
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
773 774 775 776 777 778 779
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

780
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
781 782 783
  return inference_program_->Proto()->SerializeAsString();
}

Y
Yan Chunwei 已提交
784
template <>
785 786 787 788
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
789 790
}

791
}  // namespace paddle
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
814
USE_TRT_CONVERTER(split);
815 816
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
817
USE_TRT_CONVERTER(leaky_relu);
818
#endif
819

820
USE_ANAKIN_CONVERTER(mul);
821 822
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
823
USE_ANAKIN_CONVERTER(conv2d_fusion);
824 825 826 827 828 829 830
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
831 832 833 834 835 836 837 838
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);

USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);
839
USE_ANAKIN_CONVERTER(scale);