analysis_predictor.cc 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20 21
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
25
#include "paddle/fluid/framework/ir/pass.h"
26
#include "paddle/fluid/framework/naive_executor.h"
27
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/framework/var_type_traits.h"
29
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
31
#include "paddle/fluid/inference/api/helper.h"
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/memory/memcpy.h"
36
#include "paddle/fluid/platform/cpu_helper.h"
37
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

Y
Yan Chunwei 已提交
40 41
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
42
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
N
nhzlx 已提交
43

Y
Yan Chunwei 已提交
44 45
#endif

46 47
#include "paddle/fluid/inference/anakin/convert/op_converter.h"

T
tensor-tang 已提交
48
DECLARE_bool(profile);
49 50 51

namespace paddle {

N
nhzlx 已提交
52
using inference::Singleton;
N
nhzlx 已提交
53
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
54
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
55 56
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
57
#endif
58

59 60 61 62
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
63 64
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
65 66 67 68 69 70
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
71
bool AnalysisPredictor::Init(
72 73
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
74
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
75 76 77
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
78 79
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
80 81 82
    platform::EnableProfiler(tracking_device);
  }

83
  // no matter with or without MKLDNN
L
luotao1 已提交
84
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
85

86 87 88 89 90 91 92 93 94 95 96 97 98
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
99
  }
100 101 102 103 104 105 106 107 108

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
109
  if (parent_scope) {
110 111 112
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
113
    scope_ = parent_scope;
114
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
115 116 117
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
118
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
119
  }
120 121 122 123 124
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
125 126
  if (!program) {
    if (!LoadProgramDesc()) return false;
127

128 129 130 131 132 133 134 135 136
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

137 138 139
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
140
    if (config_.ir_optim()) {
141 142 143 144 145 146 147
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
148
  } else {
149 150
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
151 152
    inference_program_ = program;
  }
M
Michal Gallus 已提交
153

154 155 156 157 158
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
159
  if (config_.use_gpu_) {
160
    status_use_gpu_ = true;
161
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
162 163 164 165 166 167 168 169
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
170
                     config_.use_feed_fetch_ops_);
171

172
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
173

174 175 176
  return true;
}

L
luotao1 已提交
177
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
178 179 180 181 182 183 184
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

185 186 187
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
L
luotao1 已提交
188 189 190
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
M
minqiyang 已提交
191
  VLOG(3) << "Predictor::predict";
192 193 194 195 196 197
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
198
    return false;
199
  }
M
Michal Gallus 已提交
200

201 202 203
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
204

205 206 207 208
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
209
  }
Y
Yan Chunwei 已提交
210 211 212 213 214 215

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
216
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
217

Y
Yan Chunwei 已提交
218 219 220 221 222 223 224
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
225 226
  return true;
}
227

228 229
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
230
  VLOG(3) << "Predictor::set_feed";
231 232 233 234 235 236 237 238 239 240 241 242 243 244
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
245
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
246
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
247
      input_ptr = input.mutable_data<float>(ddim, place_);
248 249
    } else if (inputs[i].dtype == PaddleDType::INT32) {
      input_ptr = input.mutable_data<int32_t>(ddim, place_);
250 251 252 253 254
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

255 256 257 258 259 260
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
261 262 263 264
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
265 266 267
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
268
                   inputs[i].data.length(), dev_ctx->stream());
269 270 271 272
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
273 274 275 276 277 278 279
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
280
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
281 282
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
283 284
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
285 286
      }
      idx = feed_names_[name];
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
317
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
318 319 320
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
321 322 323 324 325
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
326
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
327
    if (type == framework::proto::VarType::FP32) {
328 329
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
330
    } else if (type == framework::proto::VarType::INT64) {
331 332
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
333 334 335
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
336
    } else {
337
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
338 339
    }
  }
Y
Yan Chunwei 已提交
340 341
  return true;
}
342

343
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
344
void AnalysisPredictor::OptimizeInferenceProgram() {
345 346
  status_program_optimized_ = true;

347 348
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
349
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
350 351 352
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
353
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
354
  // Analyze inference_program
355 356
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
357 358
  } else {
    PADDLE_ENFORCE(
359
        !config_.params_file().empty(),
T
Tao Luo 已提交
360
        "Either model_dir or (param_file, prog_file) should be set.");
361
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
362
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
363

364 365
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
366
  }
367

368
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
369
    LOG(INFO) << "TensorRT subgraph engine is enabled";
370 371 372
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
373
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
374
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
375
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
W
Wojciech Uss 已提交
376
  }
377

378
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
379
    LOG(INFO) << "MKLDNN is enabled";
380 381 382
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

383
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
384 385 386 387
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
388
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
389
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
390
  argument_.SetScopeNotOwned(scope_.get());
391 392 393 394 395
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
396
  inference_program_.reset(
397
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
398
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
399
}
400 401

template <>
402 403
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
404
  VLOG(3) << "create AnalysisConfig";
405
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
406
    // 1. GPU memory
407 408 409
    PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
410
    std::vector<std::string> flags;
411 412 413 414 415 416 417 418 419 420 421

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
422 423
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
424
                         std::to_string(fraction_of_gpu_memory);
425
      flags.push_back(flag);
M
minqiyang 已提交
426
      VLOG(3) << "set flag: " << flag;
427 428 429 430 431
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
432
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
433 434
    return nullptr;
  }
G
Gabor Buella 已提交
435
  return predictor;
436 437
}

438
void AnalysisPredictor::PrepareFeedFetch() {
439 440
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
441 442 443 444 445 446 447 448
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
449
      idx2feeds_[idx] = op->Output("Out")[0];
450 451
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
452 453
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
454
      }
Y
Yan Chunwei 已提交
455
      fetches_[idx] = op;
N
nhzlx 已提交
456
      idx2fetches_[idx] = op->Input("X")[0];
457 458 459 460
    }
  }
}

461 462 463 464 465 466 467 468
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

485 486 487 488 489 490 491
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
492 493 494 495 496 497 498
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

499 500 501 502 503 504 505 506 507 508
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
509 510 511 512 513 514
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
515 516 517 518 519
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
520
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
521
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
522
  tensor_array_batch_cleaner_.ResetTensorArray();
523 524 525 526 527
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
528
  std::string filename;
529 530 531
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
532 533 534
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
535
    filename = config_.prog_file();
536
  } else {
537
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
538 539 540 541
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
542
    LOG(ERROR) << string::Sprintf(
543 544
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
545 546
    return false;
  }
547 548 549

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
550
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
551 552 553
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
554 555
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
556 557 558 559 560 561 562 563
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
564
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
565
  }
566 567 568 569 570 571 572
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

594
      if (!config_.params_file().empty()) {
595 596 597 598 599 600
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
601
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
602 603 604 605 606
        op->CheckAttrs();
      }
    }
  }

607
  if (!config_.params_file().empty()) {
608 609 610 611 612 613
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
614
    op->SetAttr("file_path", {config_.params_file()});
615 616 617 618
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
619
  framework::NaiveExecutor e(place_);
620 621 622 623
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

624 625
  return true;
}
626

N
nhzlx 已提交
627
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
628 629 630 631 632 633 634 635
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
636
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
637 638 639 640
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
641 642
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
643
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
644
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
645 646
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
647 648 649
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
650

N
nhzlx 已提交
651
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
652 653 654
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
655

N
nhzlx 已提交
656 657 658 659 660
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
661
      std::string calibration_table_data_path =
N
nhzlx 已提交
662 663 664 665
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
666 667 668 669 670

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
671 672 673 674
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
675
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
676 677
  return true;
}
N
nhzlx 已提交
678
#endif
N
nhzlx 已提交
679

680
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
681
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
682
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
683 684
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
685 686
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
687
#endif
688 689 690 691 692 693 694
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
695 696 697 698 699 700 701

  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
702 703
}

704
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
705
  std::lock_guard<std::mutex> lk(clone_mutex_);
706 707 708 709 710
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
758
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
759 760 761
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
762 763
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
764 765 766 767 768 769 770
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

771
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
772 773 774
  return inference_program_->Proto()->SerializeAsString();
}

Y
Yan Chunwei 已提交
775
template <>
776 777 778 779
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
780 781
}

782
}  // namespace paddle
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
805
USE_TRT_CONVERTER(split);
806 807
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
808
USE_TRT_CONVERTER(leaky_relu);
809
#endif
810

811
USE_ANAKIN_CONVERTER(mul);
812 813
USE_ANAKIN_CONVERTER(fc);
USE_ANAKIN_CONVERTER(conv2d);
814
USE_ANAKIN_CONVERTER(conv2d_fusion);
815 816 817 818 819 820 821
USE_ANAKIN_CONVERTER(concat);
USE_ANAKIN_CONVERTER(split);
USE_ANAKIN_CONVERTER(relu);
USE_ANAKIN_CONVERTER(sigmoid);
USE_ANAKIN_CONVERTER(tanh);
USE_ANAKIN_CONVERTER(pool2d);
USE_ANAKIN_CONVERTER(elementwise_add);
822 823 824 825 826 827 828 829
USE_ANAKIN_CONVERTER(batch_norm);
USE_ANAKIN_CONVERTER(flatten);
USE_ANAKIN_CONVERTER(reshape);
USE_ANAKIN_CONVERTER(transpose);
USE_ANAKIN_CONVERTER(softmax);

USE_ANAKIN_CONVERTER(detection_out);
USE_ANAKIN_CONVERTER(density_prior_box);