operator.h 10.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

53 54
extern std::unordered_map<std::string, OpProto>& OpProtos();

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
67 68 69
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
70
               const VarNameMap& outputs, const AttributeMap& attrs);
71 72 73 74

  OperatorBase(const OperatorBase& o) = delete;
  OperatorBase& operator=(const OperatorBase& o) = delete;
  OperatorBase(OperatorBase&& o) = delete;
75

Q
Qiao Longfei 已提交
76 77 78 79 80 81 82 83 84
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

85
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
86 87 88

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
89
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
90 91

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
92
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
93 94
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
95 96
  virtual bool IsNetOp() const { return false; }

97 98
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
99 100 101
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
102
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
103
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
104
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
105
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
106

Y
Yu Yang 已提交
107
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
108
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
109 110
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
112

Y
Yu Yang 已提交
113
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
Y
Yan Chunwei 已提交
114

115
  std::string Type() const { return type_; }
Y
Yi Wang 已提交
116 117
  const AttributeMap& Attrs() const { return attrs_; }

Q
Qiao Longfei 已提交
118
 public:
Q
Qiao Longfei 已提交
119
  std::string type_;
D
dongzhihong 已提交
120 121 122 123
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
124
  VarNameMap inputs_;
Y
Yu Yang 已提交
125

D
dongzhihong 已提交
126 127
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
128
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
129
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
130 131
};

132
class InferShapeContext {
Y
Yan Chunwei 已提交
133
 public:
134 135
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
136

Y
Yu Yang 已提交
137
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
138
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
139 140
  }

Y
Yu Yang 已提交
141
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
142
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
143 144
  }

145
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
146
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
147 148
  }

149
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
150
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
151 152
  }

153 154
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
155 156
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
157
    res.reserve(names.size());
Y
Yan Chunwei 已提交
158
    std::transform(
159
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
160
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
161 162 163
    return res;
  }

164
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
165 166
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
167
    res.reserve(names.size());
Y
Yan Chunwei 已提交
168
    std::transform(
169
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
170
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
171 172 173
    return res;
  }

174 175
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
176
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
177
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
178
    return &var->Get<T>();
179 180 181 182
  }

  template <typename T>
  T* Output(const std::string& name) const {
183
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
184
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
185
    return var->GetMutable<T>();
186 187 188 189 190 191 192 193
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
194
                   [&](const std::string& sub_name) {
195
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
196 197 198
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
199
                     return &var->Get<T>();
200 201 202 203 204 205 206 207 208 209
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
210
                   [&](const std::string& sub_name) {
211
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
212 213 214
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
215
                     return var->GetMutable<T>();
216 217 218 219 220
                   });
    return res;
  }

  const OperatorBase& op_;
221
  const Scope& scope_;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

239
class ExecutionContext : public InferShapeContext {
240
 public:
241
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
242
                   const platform::DeviceContext* device_context)
243
      : InferShapeContext(op, scope), device_context_(device_context) {}
244

Q
qijun 已提交
245 246 247
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
248
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
249

D
dongzhihong 已提交
250
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
251

Q
qijun 已提交
252
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
253
    return device_context_;
Q
qijun 已提交
254
  }
Q
qijun 已提交
255

D
dongzhihong 已提交
256
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
257 258
};

Q
qijun 已提交
259 260
class OpKernel {
 public:
Q
qijun 已提交
261
  /**
262
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
263 264
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
265
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
266 267
   */

268
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
269 270 271 272

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
273 274
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
275 276
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
277

Y
Yu Yang 已提交
278
    OpKernelKey() = default;
L
liaogang 已提交
279
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
280 281 282
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
283 284 285
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294 295 296
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
297

Y
Yu Yang 已提交
298 299 300 301
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

302
  void InferShape(const Scope& scope) const override {
303
    InferShape(InferShapeContext(*this, scope));
304 305
  }

Y
Yu Yang 已提交
306
  void Run(const Scope& scope,
Y
Yu Yang 已提交
307
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
308
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
309
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
310 311
  }

Y
Yu Yang 已提交
312 313 314 315
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
316
  }
Y
Yan Chunwei 已提交
317

318 319 320 321 322 323
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
324
 protected:
325
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
326 327 328 329
};

}  // namespace framework
}  // namespace paddle