Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
65880f7e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
65880f7e
编写于
8月 01, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into scope
上级
5d134a03
61ebacbc
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
289 addition
and
185 deletion
+289
-185
paddle/cuda/src/hl_cuda_sequence.cu
paddle/cuda/src/hl_cuda_sequence.cu
+1
-2
paddle/framework/operator.cc
paddle/framework/operator.cc
+2
-2
paddle/framework/operator.h
paddle/framework/operator.h
+106
-75
paddle/framework/operator_test.cc
paddle/framework/operator_test.cc
+28
-4
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+60
-0
paddle/operators/add_op.cc
paddle/operators/add_op.cc
+10
-11
paddle/operators/add_op.h
paddle/operators/add_op.h
+6
-5
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+9
-9
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+8
-8
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+7
-9
paddle/operators/mul_op.h
paddle/operators/mul_op.h
+5
-7
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+7
-7
paddle/operators/rowwise_add_op.h
paddle/operators/rowwise_add_op.h
+4
-6
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+8
-9
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+5
-5
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+5
-7
paddle/operators/sigmoid_op.h
paddle/operators/sigmoid_op.h
+4
-5
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+7
-9
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+4
-4
paddle/operators/type_alias.h
paddle/operators/type_alias.h
+3
-1
未找到文件。
paddle/cuda/src/hl_cuda_sequence.cu
浏览文件 @
65880f7e
...
...
@@ -269,8 +269,7 @@ void hl_sequence2batch_copy_padding(real* batch,
int
blockDimY
=
CUDA_BLOCK_SIZE
/
blockDimX
;
dim3
threads
(
blockDimX
,
blockDimY
);
int
gridDimX
=
(
maxSequenceLength
*
blockDimX
+
CUDA_BLOCK_SIZE
-
1
)
/
CUDA_BLOCK_SIZE
;
int
gridDimX
=
(
maxSequenceLength
+
blockDimY
-
1
)
/
blockDimY
;
int
gridDimY
=
numSequences
;
dim3
grid
(
gridDimX
,
gridDimY
);
...
...
paddle/framework/operator.cc
浏览文件 @
65880f7e
...
...
@@ -20,7 +20,7 @@ namespace paddle {
namespace
framework
{
template
<
>
Eigen
::
DefaultDevice
*
Kernel
Context
::
GetEigenDevice
<
Eigen
::
DefaultDevice
*
Execution
Context
::
GetEigenDevice
<
platform
::
CPUPlace
,
Eigen
::
DefaultDevice
>
()
const
{
return
device_context_
.
get_eigen_device
<
Eigen
::
DefaultDevice
>
();
}
...
...
@@ -28,7 +28,7 @@ Eigen::DefaultDevice* KernelContext::GetEigenDevice<
#ifndef PADDLE_ONLY_CPU
template
<
>
Eigen
::
GpuDevice
*
Kernel
Context
::
GetEigenDevice
<
platform
::
GPUPlace
,
Eigen
::
GpuDevice
>
()
const
{
Execution
Context
::
GetEigenDevice
<
platform
::
GPUPlace
,
Eigen
::
GpuDevice
>
()
const
{
return
device_context_
.
get_eigen_device
<
Eigen
::
GpuDevice
>
();
}
#endif
...
...
paddle/framework/operator.h
浏览文件 @
65880f7e
...
...
@@ -31,22 +31,9 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
template
<
typename
T
>
struct
EigenDeviceConverter
;
template
<>
struct
EigenDeviceConverter
<
platform
::
CPUPlace
>
{
using
EigenDeviceType
=
Eigen
::
DefaultDevice
;
};
#ifndef PADDLE_ONLY_CPU
template
<>
struct
EigenDeviceConverter
<
platform
::
GPUPlace
>
{
using
EigenDeviceType
=
Eigen
::
GpuDevice
;
};
#endif
class
OperatorBase
;
class
InferShapeContext
;
class
ExecutionContext
;
/**
* OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
...
...
@@ -112,46 +99,127 @@ class OperatorBase {
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
int
>>
in_out_idxs_
;
};
class
Kernel
Context
{
class
Operator
Context
{
public:
KernelContext
(
const
OperatorBase
*
op
,
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
device_context
)
:
op_
(
*
op
),
scope_
(
scope
),
device_context_
(
device_context
)
{}
OperatorContext
(
const
OperatorBase
*
op
,
const
Scope
&
scope
)
:
op_
(
*
op
),
scope_
(
scope
)
{}
size_t
InputSize
()
const
{
return
op_
.
inputs_
.
size
();
}
const
Variable
*
Input
(
int
index
)
const
{
return
scope_
.
FindVar
(
op_
.
inputs_
[
index
]);
size_t
OutputSize
()
const
{
return
op_
.
outputs_
.
size
();
}
const
Variable
*
InputVar
(
const
size_t
index
)
const
{
return
scope_
.
FindVar
(
op_
.
inputs_
.
at
(
index
));
}
Variable
*
Output
(
in
t
index
)
const
{
return
scope_
.
FindVar
(
op_
.
outputs_
[
index
]
);
Variable
*
Output
Var
(
const
size_
t
index
)
const
{
return
scope_
.
FindVar
(
op_
.
outputs_
.
at
(
index
)
);
}
const
Variable
*
Input
(
const
std
::
string
&
name
)
const
{
const
Variable
*
Input
Var
(
const
std
::
string
&
name
)
const
{
return
scope_
.
FindVar
(
op_
.
Input
(
name
));
}
const
Variable
*
Output
(
const
std
::
string
&
name
)
const
{
Variable
*
OutputVar
(
const
std
::
string
&
name
)
const
{
return
scope_
.
FindVar
(
op_
.
Output
(
name
));
}
const
std
::
vector
<
const
Variable
*>
Inputs
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
const
Variable
*>
MultiInputVar
(
const
std
::
string
&
name
)
const
{
auto
names
=
op_
.
Inputs
(
name
);
std
::
vector
<
const
Variable
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
res
.
begin
(
),
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
this
](
const
std
::
string
&
name
)
{
return
scope_
.
FindVar
(
name
);
});
return
res
;
}
const
std
::
vector
<
const
Variable
*>
Outputs
(
const
std
::
string
&
name
)
const
{
std
::
vector
<
const
Variable
*>
MultiOutputVar
(
const
std
::
string
&
name
)
const
{
auto
names
=
op_
.
Outputs
(
name
);
std
::
vector
<
const
Variable
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
res
.
begin
(
),
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
this
](
const
std
::
string
&
name
)
{
return
scope_
.
FindVar
(
name
);
});
return
res
;
}
template
<
typename
T
>
const
T
*
Input
(
const
size_t
index
)
const
{
return
&
(
InputVar
(
index
)
->
Get
<
T
>
());
}
template
<
typename
T
>
T
*
Output
(
const
size_t
index
)
const
{
return
OutputVar
(
index
)
->
GetMutable
<
T
>
();
}
template
<
typename
T
>
const
T
*
Input
(
const
std
::
string
&
name
)
const
{
return
&
(
InputVar
(
name
)
->
Get
<
T
>
());
}
template
<
typename
T
>
T
*
Output
(
const
std
::
string
&
name
)
const
{
return
OutputVar
(
name
)
->
GetMutable
<
T
>
();
}
template
<
typename
T
>
const
std
::
vector
<
const
T
*>
MultiInput
(
const
std
::
string
&
name
)
const
{
auto
names
=
op_
.
Inputs
(
name
);
std
::
vector
<
const
T
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
this
](
const
std
::
string
&
name
)
{
return
&
scope_
.
FindVar
(
name
)
->
Get
<
T
>
();
});
return
res
;
}
template
<
typename
T
>
std
::
vector
<
const
T
*>
MultiOutput
(
const
std
::
string
&
name
)
const
{
auto
names
=
op_
.
Outputs
(
name
);
std
::
vector
<
const
T
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
this
](
const
std
::
string
&
name
)
{
return
scope_
.
FindVar
(
name
)
->
GetMutable
<
T
>
();
});
return
res
;
}
const
OperatorBase
&
op_
;
const
Scope
&
scope_
;
};
class
InferShapeContext
:
public
OperatorContext
{
public:
InferShapeContext
(
const
OperatorBase
*
op
,
const
Scope
&
scope
)
:
OperatorContext
(
op
,
scope
)
{}
};
template
<
typename
T
>
struct
EigenDeviceConverter
;
template
<>
struct
EigenDeviceConverter
<
platform
::
CPUPlace
>
{
using
EigenDeviceType
=
Eigen
::
DefaultDevice
;
};
#ifndef PADDLE_ONLY_CPU
template
<>
struct
EigenDeviceConverter
<
platform
::
GPUPlace
>
{
using
EigenDeviceType
=
Eigen
::
GpuDevice
;
};
#endif
class
ExecutionContext
:
public
OperatorContext
{
public:
ExecutionContext
(
const
OperatorBase
*
op
,
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
device_context
)
:
OperatorContext
(
op
,
scope
),
device_context_
(
device_context
)
{}
template
<
typename
PlaceType
,
typename
DeviceType
=
typename
EigenDeviceConverter
<
PlaceType
>::
EigenDeviceType
>
...
...
@@ -159,38 +227,23 @@ class KernelContext {
platform
::
Place
GetPlace
()
const
{
return
device_context_
.
GetPlace
();
}
const
OperatorBase
&
op_
;
const
Scope
&
scope_
;
const
platform
::
DeviceContext
&
device_context_
;
};
class
OpKernel
{
public:
/**
*
Kernel
Context is the only parameter of Kernel Run function.
*
Execution
Context is the only parameter of Kernel Run function.
* Run will get input/output variables, state such as momentum and
* device resource such as CUDA stream, cublas handle, etc. from
*
Kernel
Context. User should construct it before run the Operator.
*
Execution
Context. User should construct it before run the Operator.
*/
virtual
void
Compute
(
const
Kernel
Context
&
context
)
const
=
0
;
virtual
void
Compute
(
const
Execution
Context
&
context
)
const
=
0
;
virtual
~
OpKernel
()
{}
};
template
<
typename
T
>
struct
VarToTensor
{};
template
<>
struct
VarToTensor
<
Tensor
*>
{
Tensor
*
operator
()(
Variable
*
var
)
{
return
var
->
GetMutable
<
Tensor
>
();
}
};
template
<>
struct
VarToTensor
<
const
Tensor
*>
{
const
Tensor
*
operator
()(
Variable
*
var
)
{
return
&
var
->
Get
<
Tensor
>
();
}
};
class
OperatorWithKernel
:
public
OperatorBase
{
public:
struct
OpKernelKey
{
...
...
@@ -216,10 +269,14 @@ class OperatorWithKernel : public OperatorBase {
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelKey
,
std
::
unique_ptr
<
OpKernel
>
,
OpKernelHash
>
;
void
InferShape
(
const
Scope
&
scope
)
const
{
InferShape
(
InferShapeContext
(
this
,
scope
));
}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
final
{
auto
&
opKernel
=
AllOpKernels
().
at
(
type_
).
at
(
OpKernelKey
(
dev_ctx
));
opKernel
->
Compute
(
Kernel
Context
(
this
,
scope
,
dev_ctx
));
opKernel
->
Compute
(
Execution
Context
(
this
,
scope
,
dev_ctx
));
}
static
std
::
unordered_map
<
std
::
string
/* op_type */
,
OpKernelMap
>&
...
...
@@ -228,34 +285,8 @@ class OperatorWithKernel : public OperatorBase {
return
g_all_op_kernels
;
}
void
InferShape
(
const
Scope
&
scope
)
const
final
{
std
::
vector
<
const
Tensor
*>
ins
;
VarNamesToTensors
(
scope
,
inputs_
,
&
ins
);
std
::
vector
<
Tensor
*>
outs
;
VarNamesToTensors
(
scope
,
outputs_
,
&
outs
);
InferShape
(
ins
,
outs
);
};
private:
template
<
typename
T
>
void
VarNamesToTensors
(
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
var_names
,
std
::
vector
<
T
>*
container
)
const
{
container
->
reserve
(
var_names
.
size
());
VarToTensor
<
T
>
convert
;
for
(
auto
&
name
:
var_names
)
{
auto
var
=
scope
.
FindVar
(
name
);
if
(
var
!=
nullptr
)
{
container
->
push_back
(
convert
(
var
));
}
else
{
container
->
push_back
(
nullptr
);
}
}
}
protected:
virtual
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>&
inputs
,
const
std
::
vector
<
Tensor
*>&
outputs
)
const
=
0
;
virtual
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
=
0
;
};
}
// namespace framework
...
...
paddle/framework/operator_test.cc
浏览文件 @
65880f7e
...
...
@@ -73,6 +73,7 @@ TEST(OperatorBase, all) {
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
scope
.
NewVar
(
"OUT1"
);
ASSERT_EQ
(
paddle
::
framework
::
op_run_num
,
0
);
op
->
InferShape
(
scope
);
op
->
Run
(
scope
,
device_context
);
ASSERT_EQ
(
paddle
::
framework
::
op_run_num
,
1
);
}
...
...
@@ -97,14 +98,13 @@ static int cpu_kernel_run_num = 0;
class
OpWithKernelTest
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>&
inputs
,
const
std
::
vector
<
Tensor
*>&
outputs
)
const
override
{}
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{}
};
template
<
typename
T1
,
typename
T2
>
class
CPUKernelTest
:
public
OpKernel
{
public:
void
Compute
(
const
Kernel
Context
&
ctx
)
const
{
void
Compute
(
const
Execution
Context
&
ctx
)
const
{
std
::
cout
<<
"this is cpu kernel"
<<
std
::
endl
;
std
::
cout
<<
ctx
.
op_
.
DebugString
()
<<
std
::
endl
;
cpu_kernel_run_num
++
;
...
...
@@ -149,13 +149,31 @@ class OpKernelTestMultiInputsProtoAndCheckerMaker
class
CPUKernalMultiInputsTest
:
public
OpKernel
{
public:
void
Compute
(
const
Kernel
Context
&
ctx
)
const
{
void
Compute
(
const
Execution
Context
&
ctx
)
const
{
auto
xs
=
ctx
.
op_
.
Inputs
(
"xs"
);
ASSERT_EQ
(
xs
.
size
(),
3UL
);
ASSERT_EQ
(
xs
[
0
],
"x0"
);
ASSERT_EQ
(
xs
[
1
],
"x1"
);
ASSERT_EQ
(
xs
[
2
],
"x2"
);
auto
inVar0
=
ctx
.
MultiInputVar
(
"xs"
);
ASSERT_EQ
(
inVar0
.
size
(),
3
);
auto
intVar1
=
ctx
.
InputVar
(
"k"
);
ASSERT_NE
(
intVar1
,
nullptr
);
auto
outVar0
=
ctx
.
MultiOutputVar
(
"ys"
);
ASSERT_EQ
(
outVar0
.
size
(),
2
);
auto
inTensor0
=
ctx
.
MultiInput
<
Tensor
>
(
"xs"
);
ASSERT_EQ
(
inTensor0
.
size
(),
3
);
auto
intTensor1
=
ctx
.
Input
<
Tensor
>
(
"k"
);
ASSERT_NE
(
intTensor1
,
nullptr
);
auto
outTensor0
=
ctx
.
MultiOutput
<
Tensor
>
(
"ys"
);
ASSERT_EQ
(
outTensor0
.
size
(),
2
);
auto
k
=
ctx
.
op_
.
Input
(
"k"
);
ASSERT_EQ
(
k
,
"k0"
);
...
...
@@ -233,6 +251,12 @@ TEST(OpKernel, multi_inputs) {
paddle
::
platform
::
CPUDeviceContext
cpu_device_context
;
paddle
::
framework
::
Scope
scope
;
scope
.
NewVar
(
"x0"
)
->
GetMutable
<
Tensor
>
();
scope
.
NewVar
(
"x1"
)
->
GetMutable
<
Tensor
>
();
scope
.
NewVar
(
"x2"
)
->
GetMutable
<
Tensor
>
();
scope
.
NewVar
(
"k0"
)
->
GetMutable
<
Tensor
>
();
scope
.
NewVar
(
"y0"
)
->
GetMutable
<
Tensor
>
();
scope
.
NewVar
(
"y1"
)
->
GetMutable
<
Tensor
>
();
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
op
->
Run
(
scope
,
cpu_device_context
);
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
65880f7e
...
...
@@ -1141,4 +1141,64 @@ TEST(CpuMatrix, copyFrom) {
TensorCheckEqual
(
cpu
,
copy
);
}
void
testBatch2seqPadding
(
int
batchSize
,
int
inputDim
)
{
MatrixPtr
cpuInput
=
std
::
make_shared
<
CpuMatrix
>
(
batchSize
,
inputDim
);
MatrixPtr
gpuInput
=
std
::
make_shared
<
GpuMatrix
>
(
batchSize
,
inputDim
);
cpuInput
->
randomizeUniform
();
gpuInput
->
copyFrom
(
*
cpuInput
);
IVectorPtr
cpuSequence
;
generateSequenceStartPositions
(
batchSize
,
cpuSequence
);
IVectorPtr
gpuSequence
=
IVector
::
create
(
cpuSequence
->
getSize
(),
true
);
gpuSequence
->
copyFrom
(
*
cpuSequence
);
size_t
numSeq
=
cpuSequence
->
getSize
()
-
1
;
size_t
maxSeqLen
=
*
std
::
max_element
(
cpuSequence
->
getData
(),
cpuSequence
->
getData
()
+
numSeq
);
MatrixPtr
cBatch
=
std
::
make_shared
<
CpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
MatrixPtr
gBatch
=
std
::
make_shared
<
GpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
MatrixPtr
cCheck
=
std
::
make_shared
<
CpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
hl_sequence2batch_copy_padding
(
gBatch
->
getData
(),
gpuInput
->
getData
(),
cpuSequence
->
getData
(),
inputDim
,
maxSeqLen
,
numSeq
,
false
,
true
);
cCheck
->
copyFrom
(
*
gBatch
);
int
*
seqStart
=
cpuSequence
->
getData
();
float
*
batchData
=
cBatch
->
getData
();
float
*
seqData
=
cpuInput
->
getData
();
for
(
size_t
i
=
0
;
i
<
maxSeqLen
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
numSeq
;
j
++
)
{
size_t
sequenceStart
=
seqStart
[
j
];
size_t
sequenceLength
=
seqStart
[
j
+
1
]
-
seqStart
[
j
];
if
(
i
<
sequenceLength
)
{
memcpy
(
batchData
+
(
i
*
numSeq
+
j
)
*
inputDim
,
seqData
+
(
sequenceStart
+
i
)
*
inputDim
,
inputDim
*
sizeof
(
real
));
}
else
{
memset
(
batchData
+
(
i
*
numSeq
+
j
)
*
inputDim
,
0
,
inputDim
*
sizeof
(
real
));
}
}
}
TensorCheckErr
(
*
cBatch
,
*
cCheck
);
}
TEST
(
Matrix
,
warpCTC
)
{
for
(
auto
batchSize
:
{
51
,
526
,
2884
})
{
for
(
auto
inputDim
:
{
32
,
512
,
2026
})
{
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputDim="
<<
inputDim
;
testBatch2seqPadding
(
batchSize
,
inputDim
);
}
}
}
#endif
paddle/operators/add_op.cc
浏览文件 @
65880f7e
...
...
@@ -19,16 +19,16 @@ namespace operators {
class
AddOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{
PADDLE_ENFORCE
(
inputs
.
size
()
==
2
,
"Input size of AddOp must be two
"
);
PADDLE_ENFORCE
(
outputs
.
size
()
==
1
,
"Output size of AddOp must be one"
);
PADDLE_ENFORCE
(
inputs
[
0
]
!=
nullptr
&&
inputs
[
1
]
!=
nullptr
&&
outputs
[
0
]
!=
nullptr
,
"Inputs/
Outputs of AddOp must all be set"
);
PADDLE_ENFORCE
(
inputs
[
0
]
->
dims
()
==
inputs
[
1
]
->
dims
(),
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
2
,
"Input size of AddOp must be two"
);
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1
,
"Output size of AddOp must be one
"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
0
)
!=
nullptr
&&
ctx
.
InputVar
(
1
)
!=
nullptr
,
"Inputs of AddOp must all be set"
);
PADDLE_ENFORCE
(
ctx
.
OutputVar
(
0
)
!=
nullptr
,
"
Outputs of AddOp must all be set"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
1
)
->
dims
(),
"Two input of Add Op's dimension must be same."
);
outputs
[
0
]
->
Resize
(
inputs
[
0
]
->
dims
());
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
}
};
...
...
@@ -49,8 +49,7 @@ The equation is: Out = X + Y
class
AddOpGrad
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{}
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{}
std
::
string
DebugString
()
const
override
{
LOG
(
INFO
)
<<
"AddOpGrad"
;
return
""
;
...
...
paddle/operators/add_op.h
浏览文件 @
65880f7e
...
...
@@ -21,16 +21,17 @@ namespace operators {
template
<
typename
Place
,
typename
T
>
class
AddKernel
:
public
OpKernel
{
public:
void
Compute
(
const
Kernel
Context
&
context
)
const
override
{
auto
input0
=
context
.
Input
(
0
)
->
Get
<
Tensor
>
(
);
auto
input1
=
context
.
Input
(
1
)
->
Get
<
Tensor
>
(
);
auto
output
=
context
.
Output
(
0
)
->
GetMutable
<
Tensor
>
(
);
void
Compute
(
const
Execution
Context
&
context
)
const
override
{
auto
input0
=
context
.
Input
<
Tensor
>
(
0
);
auto
input1
=
context
.
Input
<
Tensor
>
(
1
);
auto
output
=
context
.
Output
<
Tensor
>
(
0
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
EigenVector
<
T
>::
Flatten
(
*
output
).
device
(
*
(
context
.
GetEigenDevice
<
Place
>
()))
=
EigenVector
<
T
>::
Flatten
(
input0
)
+
EigenVector
<
T
>::
Flatten
(
input1
);
framework
::
EigenVector
<
T
>::
Flatten
(
*
input0
)
+
framework
::
EigenVector
<
T
>::
Flatten
(
*
input1
);
}
};
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
65880f7e
...
...
@@ -19,20 +19,20 @@ namespace operators {
class
OnehotCrossEntropyOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{
PADDLE_ENFORCE
(
inputs
.
size
()
==
2
,
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
2
,
"Input size of OnehotCrossEntropyOp must be two"
);
PADDLE_ENFORCE
(
outputs
.
s
ize
()
==
1
,
PADDLE_ENFORCE
(
ctx
.
OutputS
ize
()
==
1
,
"Output size of OnehotCrossEntropyOp must be one"
);
PADDLE_ENFORCE
(
inputs
[
0
]
!=
nullptr
&&
inputs
[
1
]
!=
nullptr
,
PADDLE_ENFORCE
(
ctx
.
InputVar
(
0
)
!=
nullptr
&&
ctx
.
InputVar
(
1
)
!=
nullptr
,
"Inputs of OnehotCrossEntropyOp must all be set"
);
PADDLE_ENFORCE
(
outputs
[
0
]
!=
nullptr
,
PADDLE_ENFORCE
(
ctx
.
OutputVar
(
0
)
!=
nullptr
,
"Outputs of OnehotCrossEntropyOp must all be set"
);
PADDLE_ENFORCE
(
inputs
[
0
]
->
dims
().
size
()
==
2
,
"X's dimension must be 2."
);
PADDLE_ENFORCE
(
outputs
[
0
]
->
dims
().
size
()
==
1
,
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
().
size
()
==
2
,
"X's dimension must be 2."
);
PADDLE_ENFORCE
(
ctx
.
Output
<
Tensor
>
(
0
)
->
dims
().
size
()
==
1
,
"label's dimension must be 1."
);
outputs
[
0
]
->
Resize
({
inputs
[
0
]
->
dims
()[
0
]});
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
({
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
()[
0
]});
}
};
...
...
paddle/operators/cross_entropy_op.h
浏览文件 @
65880f7e
...
...
@@ -23,18 +23,18 @@ class OnehotCrossEntropyOpKernel : public OpKernel {
public:
constexpr
T
LOG_THRESHOLD
()
const
{
return
static_cast
<
T
>
(
1e-20
);
}
void
Compute
(
const
KernelContext
&
context
)
const
override
{
auto
X
=
c
ontext
.
Input
(
0
)
->
Get
<
Tensor
>
(
);
const
T
*
X_data
=
X
.
data
<
T
>
();
const
int
*
label_data
=
c
ontext
.
Input
(
1
)
->
Get
<
Tensor
>
().
data
<
int
>
();
auto
*
Y
=
context
.
Output
(
0
)
->
GetMutable
<
Tensor
>
(
);
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
auto
X
=
c
tx
.
Input
<
Tensor
>
(
0
);
const
T
*
X_data
=
X
->
data
<
T
>
();
const
int
*
label_data
=
c
tx
.
Input
<
Tensor
>
(
1
)
->
data
<
int
>
();
auto
Y
=
ctx
.
Output
<
Tensor
>
(
0
);
Y
->
mutable_data
<
T
>
(
c
ontext
.
GetPlace
());
Y
->
mutable_data
<
T
>
(
c
tx
.
GetPlace
());
T
*
Y_data
=
Y
->
data
<
T
>
();
int
batch_size
=
X
.
dims
()[
0
];
int
class_num
=
X
.
dims
()[
1
];
int
batch_size
=
X
->
dims
()[
0
];
int
class_num
=
X
->
dims
()[
1
];
// Y[i] = -log(X[i][j])
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
paddle/operators/mul_op.cc
浏览文件 @
65880f7e
...
...
@@ -19,18 +19,17 @@ namespace operators {
class
MulOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{
PADDLE_ENFORCE
(
inputs
.
size
()
==
2
,
"The mul op must take two inputs"
);
auto
dim0
=
inputs
[
0
]
->
dims
();
auto
dim1
=
inputs
[
1
]
->
dims
();
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
2
,
"The mul op must take two inputs"
);
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
();
auto
dim1
=
ctx
.
Input
<
Tensor
>
(
1
)
->
dims
();
PADDLE_ENFORCE
(
dim0
.
size
()
==
2
&&
dim1
.
size
()
==
2
,
"The input of mul op must be matrix"
);
PADDLE_ENFORCE
(
dim0
[
1
]
==
dim1
[
0
],
"First matrix's width must be equal with second matrix's height."
);
PADDLE_ENFORCE
(
outputs
.
s
ize
()
==
1
,
"The mul op must take one output"
);
outputs
[
0
]
->
Resize
({
dim0
[
0
],
dim1
[
1
]});
PADDLE_ENFORCE
(
ctx
.
OutputS
ize
()
==
1
,
"The mul op must take one output"
);
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
({
dim0
[
0
],
dim1
[
1
]});
}
};
...
...
@@ -51,8 +50,7 @@ The equation is: Out = X * Y
class
MulOpGrad
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{}
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{}
std
::
string
DebugString
()
const
override
{
LOG
(
INFO
)
<<
"MulGrad"
;
return
""
;
...
...
paddle/operators/mul_op.h
浏览文件 @
65880f7e
...
...
@@ -22,19 +22,17 @@ namespace operators {
template
<
typename
Place
,
typename
T
>
class
MulKernel
:
public
OpKernel
{
public:
void
Compute
(
const
Kernel
Context
&
context
)
const
override
{
void
Compute
(
const
Execution
Context
&
context
)
const
override
{
Eigen
::
array
<
Eigen
::
IndexPair
<
Eigen
::
DenseIndex
>
,
1
>
dim_pair
=
{
{
Eigen
::
IndexPair
<
Eigen
::
DenseIndex
>
(
1
,
0
)}};
auto
input0
=
context
.
Input
(
0
)
->
Get
<
Tensor
>
();
auto
input1
=
context
.
Input
(
1
)
->
Get
<
Tensor
>
();
auto
*
output
=
context
.
Output
(
0
)
->
GetMutable
<
Tensor
>
();
auto
output
=
context
.
Output
<
Tensor
>
(
0
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
EigenMatrix
<
T
>::
From
(
*
output
).
device
(
*
(
context
.
GetEigenDevice
<
Place
>
()))
=
EigenMatrix
<
T
>::
From
(
input0
).
contract
(
EigenMatrix
<
T
>::
From
(
input1
),
dim_pair
);
EigenMatrix
<
T
>::
From
(
*
context
.
Input
<
Tensor
>
(
"X"
))
.
contract
(
EigenMatrix
<
T
>::
From
(
*
context
.
Input
<
Tensor
>
(
"Y"
)),
dim_pair
);
}
};
}
// namespace operators
...
...
paddle/operators/rowwise_add_op.cc
浏览文件 @
65880f7e
...
...
@@ -18,17 +18,17 @@ namespace operators {
class
RowWiseAddOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{
PADDLE_ENFORCE
(
inputs
.
size
()
==
2UL
,
"Two inputs is needed by rowwise add"
);
auto
dim0
=
inputs
[
0
]
->
dims
();
auto
dim1
=
inputs
[
1
]
->
dims
();
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
2UL
,
"Two inputs is needed by rowwise add"
);
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
();
auto
dim1
=
ctx
.
Input
<
Tensor
>
(
1
)
->
dims
();
PADDLE_ENFORCE
(
dim0
.
size
()
==
2
,
"Input 0 must be matrix"
);
PADDLE_ENFORCE
(
dim1
.
size
()
==
1
,
"The second input must be vector"
);
PADDLE_ENFORCE
(
dim0
[
1
]
==
dim1
[
0
],
"The width of two input must be same"
);
PADDLE_ENFORCE
(
outputs
.
s
ize
()
==
1
,
"The output size must be 1"
);
outputs
[
0
]
->
Resize
(
inputs
[
0
]
->
dims
());
PADDLE_ENFORCE
(
ctx
.
OutputS
ize
()
==
1
,
"The output size must be 1"
);
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
}
};
...
...
paddle/operators/rowwise_add_op.h
浏览文件 @
65880f7e
...
...
@@ -21,14 +21,12 @@ namespace operators {
template
<
typename
Place
,
typename
T
>
class
RowWiseAddKernel
:
public
OpKernel
{
public:
void
Compute
(
const
KernelContext
&
context
)
const
override
{
auto
in0
=
context
.
Input
(
0
)
->
Get
<
Tensor
>
();
auto
in1
=
context
.
Input
(
1
)
->
Get
<
Tensor
>
();
auto
*
out
=
context
.
Output
(
0
)
->
GetMutable
<
Tensor
>
();
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
auto
out
=
context
.
Output
<
Tensor
>
(
0
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
input
=
EigenMatrix
<
T
>::
From
(
in0
);
auto
bias
=
EigenVector
<
T
>::
From
(
in1
);
auto
input
=
EigenMatrix
<
T
>::
From
(
*
context
.
Input
<
Tensor
>
(
0
)
);
auto
bias
=
EigenVector
<
T
>::
From
(
*
context
.
Input
<
Tensor
>
(
1
)
);
auto
output
=
EigenMatrix
<
T
>::
From
(
*
out
);
const
int
bias_size
=
bias
.
dimension
(
0
);
...
...
paddle/operators/sgd_op.cc
浏览文件 @
65880f7e
...
...
@@ -19,16 +19,15 @@ namespace operators {
class
SGDOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{
PADDLE_ENFORCE
(
inputs
.
size
()
==
2
,
"Input size of SGDOp must be two"
);
PADDLE_ENFORCE
(
outputs
.
size
()
==
1
,
"Output size of SGDOp must be one"
);
PADDLE_ENFORCE
(
inputs
[
0
]
!=
nullptr
,
"inputs[0] mast be set"
);
PADDLE_ENFORCE
(
inputs
[
1
]
!=
nullptr
,
"inputs[1] mast be set"
);
PADDLE_ENFORCE
(
outputs
[
0
]
!=
nullptr
,
"outputs[0] mast be set"
);
PADDLE_ENFORCE
(
inputs
[
0
]
->
dims
()
==
inputs
[
1
]
->
dims
(),
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
2
,
"Input size of SGDOp must be two"
);
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1
,
"Output size of SGDOp must be one"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
0
)
!=
nullptr
,
"inputs[0] mast be set"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
1
)
!=
nullptr
,
"inputs[1] mast be set"
);
PADDLE_ENFORCE
(
ctx
.
OutputVar
(
0
)
!=
nullptr
,
"outputs[0] mast be set"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
1
)
->
dims
(),
"Two input of SGD Op's dimension must be same."
);
outputs
[
0
]
->
Resize
(
inputs
[
0
]
->
dims
());
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
}
};
...
...
paddle/operators/sgd_op.h
浏览文件 @
65880f7e
...
...
@@ -21,16 +21,16 @@ namespace operators {
template
<
typename
Place
,
typename
T
>
class
SGDOpKernel
:
public
OpKernel
{
public:
void
Compute
(
const
Kernel
Context
&
ctx
)
const
override
{
auto
param
=
ctx
.
Input
(
"param"
)
->
Get
<
Tensor
>
(
);
auto
grad
=
ctx
.
Input
(
"grad"
)
->
Get
<
Tensor
>
(
);
auto
*
param_out
=
ctx
.
Output
(
0
)
->
GetMutable
<
Tensor
>
(
);
void
Compute
(
const
Execution
Context
&
ctx
)
const
override
{
auto
param
=
ctx
.
Input
<
Tensor
>
(
"param"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"grad"
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
0
);
float
lr
=
ctx
.
op_
.
GetAttr
<
float
>
(
"learning_rate"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenVector
<
T
>::
Flatten
(
*
param_out
).
device
(
*
(
ctx
.
GetEigenDevice
<
Place
>
()))
=
EigenVector
<
T
>::
Flatten
(
param
)
-
lr
*
EigenVector
<
T
>::
Flatten
(
grad
);
EigenVector
<
T
>::
Flatten
(
*
param
)
-
lr
*
EigenVector
<
T
>::
Flatten
(
*
grad
);
}
};
...
...
paddle/operators/sigmoid_op.cc
浏览文件 @
65880f7e
...
...
@@ -18,11 +18,10 @@ namespace operators {
class
SigmoidOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{
PADDLE_ENFORCE
(
inputs
.
size
()
==
1
,
"Sigmoid Op only have one input"
);
PADDLE_ENFORCE
(
outputs
.
size
()
==
1
,
"Sigmoid Op only have one output"
);
outputs
[
0
]
->
Resize
(
inputs
[
0
]
->
dims
());
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
1
,
"Sigmoid Op only have one input"
);
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1
,
"Sigmoid Op only have one output"
);
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
}
};
...
...
@@ -38,8 +37,7 @@ public:
class
SigmoidOpGrad
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{}
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{}
std
::
string
DebugString
()
const
override
{
LOG
(
INFO
)
<<
"SigmoidGrad"
;
return
""
;
...
...
paddle/operators/sigmoid_op.h
浏览文件 @
65880f7e
...
...
@@ -22,15 +22,14 @@ namespace operators {
template
<
typename
Place
,
typename
T
>
class
SigmoidKernel
:
public
OpKernel
{
public:
void
Compute
(
const
KernelContext
&
context
)
const
override
{
auto
input
=
context
.
Input
(
0
)
->
Get
<
Tensor
>
();
auto
*
output
=
context
.
Output
(
0
)
->
GetMutable
<
Tensor
>
();
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
auto
input
=
context
.
Input
<
Tensor
>
(
0
);
auto
output
=
context
.
Output
<
Tensor
>
(
0
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
EigenVector
<
T
>::
Flatten
(
*
output
).
device
(
*
(
context
.
GetEigenDevice
<
Place
>
()))
=
1.0
/
(
1.0
+
(
-
1.0
*
EigenVector
<
T
>::
Flatten
(
input
)).
exp
());
1.0
/
(
1.0
+
(
-
1.0
*
EigenVector
<
T
>::
Flatten
(
*
input
)).
exp
());
}
};
}
// namespace operators
...
...
paddle/operators/softmax_op.cc
浏览文件 @
65880f7e
...
...
@@ -18,14 +18,13 @@ namespace operators {
class
SoftmaxOp
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{
PADDLE_ENFORCE
(
inputs
.
size
()
==
1
,
"Only one input is need for softmax"
);
PADDLE_ENFORCE
(
inputs
[
0
]
->
dims
().
size
()
==
2
,
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
InputSize
()
==
1
,
"Only one input is need for softmax"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
().
size
()
==
2
,
"The input of softmax op must be matrix"
);
PADDLE_ENFORCE
(
outputs
.
size
()
==
1
,
"Only one output is need for softmax"
);
outputs
[
0
]
->
Resize
(
inputs
[
0
]
->
dims
());
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1
,
"Only one output is need for softmax"
);
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
}
};
...
...
@@ -41,8 +40,7 @@ public:
class
SoftmaxOpGrad
:
public
OperatorWithKernel
{
protected:
void
InferShape
(
const
std
::
vector
<
const
Tensor
*>
&
inputs
,
const
std
::
vector
<
Tensor
*>
&
outputs
)
const
override
{}
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{}
std
::
string
DebugString
()
const
override
{
LOG
(
INFO
)
<<
"SoftmaxOpGrad"
;
return
""
;
...
...
paddle/operators/softmax_op.h
浏览文件 @
65880f7e
...
...
@@ -22,12 +22,12 @@ namespace operators {
template
<
typename
Place
,
typename
T
>
class
SoftmaxKernel
:
public
OpKernel
{
public:
void
Compute
(
const
Kernel
Context
&
context
)
const
override
{
auto
input
=
context
.
Input
(
0
)
->
Get
<
Tensor
>
(
);
auto
*
output
=
context
.
Output
(
0
)
->
GetMutable
<
Tensor
>
(
);
void
Compute
(
const
Execution
Context
&
context
)
const
override
{
auto
input
=
context
.
Input
<
Tensor
>
(
0
);
auto
output
=
context
.
Output
<
Tensor
>
(
0
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
logits
=
EigenMatrix
<
T
>::
From
(
input
);
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
input
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
output
);
const
int
kBatchDim
=
0
;
...
...
paddle/operators/type_alias.h
浏览文件 @
65880f7e
...
...
@@ -22,7 +22,9 @@ namespace paddle {
namespace
operators
{
using
OpKernel
=
framework
::
OpKernel
;
using
KernelContext
=
framework
::
KernelContext
;
using
InferShapeContext
=
framework
::
InferShapeContext
;
using
ExecutionContext
=
framework
::
ExecutionContext
;
using
Variable
=
framework
::
Variable
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录