operator.h 11.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

53 54
extern std::unordered_map<std::string, OpProto>& OpProtos();

Q
Qiao Longfei 已提交
55
class OperatorBase;
56 57
class InferShapeContext;
class ExecutionContext;
58

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
67 68 69 70 71 72 73 74 75 76 77
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase() = default;
  OperatorBase(const std::string& type, const VarNameMap& inputs,
               const VarNameMap& outputs, const AttributeMap& attrs)
      : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  OperatorBase(const OperatorBase& o) = delete;
  OperatorBase& operator=(const OperatorBase& o) = delete;
  OperatorBase(OperatorBase&& o) = delete;

Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85 86
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

87
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
88

Q
Qiao Longfei 已提交
89 90 91 92
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
93 94
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
95
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
96 97

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
98
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
99 100
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
101 102
  virtual bool IsNetOp() const { return false; }

103 104
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
105 106 107
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
108
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
109
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
110
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
112

Y
Yu Yang 已提交
113
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
114
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
115 116
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
117
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const {
    std::vector<std::string> ret_val;
    if (has_intermediate) {
      // push all outputs into ret_val
      for (auto& o : outputs_) {
        ret_val.reserve(ret_val.size() + o.second.size());
        ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
      }
      return ret_val;
    }
    auto it = OpProtos().find(type_);
    PADDLE_ENFORCE(
        it != OpProtos().end(),
        "Operator %s not registered, cannot figure out intermediate outputs",
        type_);

    // get all OpProto::Var for outputs
    for (auto& o : it->second.outputs()) {
      // ignore all intermediate output
      if (o.intermediate()) continue;
      auto out = outputs_.find(o.name());
      if (out != outputs_.end()) {
        ret_val.reserve(ret_val.size() + out->second.size());
        ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
      }
    }
    return ret_val;
  }

148
  std::string Type() const { return type_; }
Y
Yi Wang 已提交
149 150
  const AttributeMap& Attrs() const { return attrs_; }

Q
Qiao Longfei 已提交
151
 public:
Q
Qiao Longfei 已提交
152
  std::string type_;
D
dongzhihong 已提交
153 154 155 156
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
157
  std::map<std::string, std::vector<std::string>> inputs_;
Y
Yu Yang 已提交
158

D
dongzhihong 已提交
159 160
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
161
  std::map<std::string, std::vector<std::string>> outputs_;
Q
Qiao Longfei 已提交
162
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
163 164
};

165 166 167 168 169 170 171 172 173
#define DEFINE_OPERATOR_CTOR(Class, ParentClass)                               \
 public:                                                                       \
  Class() : ParentClass() { /* TODO(yi): This constructor is to be removed. */ \
  }                                                                            \
  Class(const std::string& type, const VarNameMap& inputs,                     \
        const VarNameMap& outputs,                                             \
        const paddle::framework::AttributeMap& attrs)                          \
      : ParentClass(type, inputs, outputs, attrs) {}

174
class InferShapeContext {
Y
Yan Chunwei 已提交
175
 public:
176 177
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
178

Y
Yu Yang 已提交
179 180
  size_t InputSize(const std::string& name) const {
    return op_.inputs_.at(name).size();
Y
Yan Chunwei 已提交
181 182
  }

Y
Yu Yang 已提交
183 184
  size_t OutputSize(const std::string& name) const {
    return op_.outputs_.at(name).size();
Y
Yan Chunwei 已提交
185 186
  }

187
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
188
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
189 190
  }

191
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
192
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
193 194
  }

195 196
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
197 198
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
199
    res.reserve(names.size());
Y
Yan Chunwei 已提交
200
    std::transform(
201
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
202
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
203 204 205
    return res;
  }

206
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
207 208
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
209
    res.reserve(names.size());
Y
Yan Chunwei 已提交
210
    std::transform(
211
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
212
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
213 214 215
    return res;
  }

216 217
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
218
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
219
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
220
    return &var->Get<T>();
221 222 223 224
  }

  template <typename T>
  T* Output(const std::string& name) const {
225
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
226
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
227
    return var->GetMutable<T>();
228 229 230 231 232 233 234 235
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
236
                   [&](const std::string& sub_name) {
237
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
238 239 240
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
241
                     return &var->Get<T>();
242 243 244 245 246 247 248 249 250 251
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
252
                   [&](const std::string& sub_name) {
253
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
254 255 256
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiOutput(%s:%s) should not be nullptr", name,
                         sub_name);
257
                     return var->GetMutable<T>();
258 259 260 261 262
                   });
    return res;
  }

  const OperatorBase& op_;
263
  const Scope& scope_;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

281
class ExecutionContext : public InferShapeContext {
282
 public:
283
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
284
                   const platform::DeviceContext* device_context)
285
      : InferShapeContext(op, scope), device_context_(device_context) {}
286

Q
qijun 已提交
287 288 289
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
290
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
291

D
dongzhihong 已提交
292
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
293

D
dongzhihong 已提交
294
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
295 296
};

Q
qijun 已提交
297 298
class OpKernel {
 public:
Q
qijun 已提交
299
  /**
300
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
301 302
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
303
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
304 305
   */

306
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
307 308 309 310

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
311 312
class OperatorWithKernel : public OperatorBase {
 public:
313 314
  DEFINE_OPERATOR_CTOR(OperatorWithKernel, OperatorBase)

Y
Yu Yang 已提交
315 316
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
317

Y
Yu Yang 已提交
318
    OpKernelKey() = default;
L
liaogang 已提交
319
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
320 321 322
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
323 324 325
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
326 327 328 329 330 331 332 333 334 335 336
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
337

338
  void InferShape(const Scope& scope) const override {
339
    InferShape(InferShapeContext(*this, scope));
340 341
  }

Y
Yu Yang 已提交
342
  void Run(const Scope& scope,
Y
Yu Yang 已提交
343
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
344
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
345
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
346 347
  }

Y
Yu Yang 已提交
348 349 350 351
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
352
  }
Y
Yan Chunwei 已提交
353

354 355 356 357 358 359
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
360
 protected:
361
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
362 363 364 365
};

}  // namespace framework
}  // namespace paddle