yolo_loss.py 15.3 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from ppdet.core.workspace import register
W
wangguanzhong 已提交
21 22 23 24
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
K
Kaipeng Deng 已提交
25

26 27 28
import logging
logger = logging.getLogger(__name__)

K
Kaipeng Deng 已提交
29 30 31 32 33 34 35 36 37
__all__ = ['YOLOv3Loss']


@register
class YOLOv3Loss(object):
    """
    Combined loss for YOLOv3 network

    Args:
38
        train_batch_size (int): training batch size
K
Kaipeng Deng 已提交
39 40 41 42 43
        ignore_thresh (float): threshold to ignore confidence loss
        label_smooth (bool): whether to use label smoothing
        use_fine_grained_loss (bool): whether use fine grained YOLOv3 loss
                                      instead of fluid.layers.yolov3_loss
    """
L
lxastro 已提交
44
    __inject__ = ['iou_loss', 'iou_aware_loss']
45
    __shared__ = ['use_fine_grained_loss', 'train_batch_size']
K
Kaipeng Deng 已提交
46

47 48 49
    def __init__(
            self,
            train_batch_size=8,
50
            batch_size=-1,  # stub for backward compatable
51 52 53 54 55 56 57 58
            ignore_thresh=0.7,
            label_smooth=True,
            use_fine_grained_loss=False,
            iou_loss=None,
            iou_aware_loss=None,
            downsample=[32, 16, 8],
            scale_x_y=1.,
            match_score=False):
59
        self._train_batch_size = train_batch_size
K
Kaipeng Deng 已提交
60 61 62
        self._ignore_thresh = ignore_thresh
        self._label_smooth = label_smooth
        self._use_fine_grained_loss = use_fine_grained_loss
C
CodesFarmer 已提交
63
        self._iou_loss = iou_loss
L
lxastro 已提交
64
        self._iou_aware_loss = iou_aware_loss
W
wangguanzhong 已提交
65
        self.downsample = downsample
W
wangguanzhong 已提交
66
        self.scale_x_y = scale_x_y
W
wangguanzhong 已提交
67
        self.match_score = match_score
K
Kaipeng Deng 已提交
68

69 70 71 72 73
        if batch_size != -1:
            logger.warn(
                "config YOLOv3Loss.batch_size is deprecated, "
                "training batch size should be set by TrainReader.batch_size")

K
Kaipeng Deng 已提交
74 75 76 77
    def __call__(self, outputs, gt_box, gt_label, gt_score, targets, anchors,
                 anchor_masks, mask_anchors, num_classes, prefix_name):
        if self._use_fine_grained_loss:
            return self._get_fine_grained_loss(
78
                outputs, targets, gt_box, self._train_batch_size, num_classes,
K
Kaipeng Deng 已提交
79 80 81 82
                mask_anchors, self._ignore_thresh)
        else:
            losses = []
            for i, output in enumerate(outputs):
W
wangguanzhong 已提交
83 84
                scale_x_y = self.scale_x_y if not isinstance(
                    self.scale_x_y, Sequence) else self.scale_x_y[i]
K
Kaipeng Deng 已提交
85 86 87 88 89 90 91 92 93 94
                anchor_mask = anchor_masks[i]
                loss = fluid.layers.yolov3_loss(
                    x=output,
                    gt_box=gt_box,
                    gt_label=gt_label,
                    gt_score=gt_score,
                    anchors=anchors,
                    anchor_mask=anchor_mask,
                    class_num=num_classes,
                    ignore_thresh=self._ignore_thresh,
W
wangguanzhong 已提交
95
                    downsample_ratio=self.downsample[i],
K
Kaipeng Deng 已提交
96
                    use_label_smooth=self._label_smooth,
W
wangguanzhong 已提交
97
                    scale_x_y=scale_x_y,
K
Kaipeng Deng 已提交
98
                    name=prefix_name + "yolo_loss" + str(i))
W
wangguanzhong 已提交
99

K
Kaipeng Deng 已提交
100 101 102 103
                losses.append(fluid.layers.reduce_mean(loss))

            return {'loss': sum(losses)}

104 105 106 107
    def _get_fine_grained_loss(self,
                               outputs,
                               targets,
                               gt_box,
108
                               train_batch_size,
109 110 111 112
                               num_classes,
                               mask_anchors,
                               ignore_thresh,
                               eps=1.e-10):
K
Kaipeng Deng 已提交
113 114 115 116 117 118 119 120
        """
        Calculate fine grained YOLOv3 loss

        Args:
            outputs ([Variables]): List of Variables, output of backbone stages
            targets ([Variables]): List of Variables, The targets for yolo
                                   loss calculatation.
            gt_box (Variable): The ground-truth boudding boxes.
121
            train_batch_size (int): The training batch size
K
Kaipeng Deng 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            num_classes (int): class num of dataset
            mask_anchors ([[float]]): list of anchors in each output layer
            ignore_thresh (float): prediction bbox overlap any gt_box greater
                                   than ignore_thresh, objectness loss will
                                   be ignored.

        Returns:
            Type: dict
                xy_loss (Variable): YOLOv3 (x, y) coordinates loss
                wh_loss (Variable): YOLOv3 (w, h) coordinates loss
                obj_loss (Variable): YOLOv3 objectness score loss
                cls_loss (Variable): YOLOv3 classification loss

        """

        assert len(outputs) == len(targets), \
            "YOLOv3 output layer number not equal target number"

L
lxastro 已提交
140 141 142 143 144
        loss_xys, loss_whs, loss_objs, loss_clss = [], [], [], []
        if self._iou_loss is not None:
            loss_ious = []
        if self._iou_aware_loss is not None:
            loss_iou_awares = []
K
Kaipeng Deng 已提交
145 146
        for i, (output, target,
                anchors) in enumerate(zip(outputs, targets, mask_anchors)):
W
wangguanzhong 已提交
147
            downsample = self.downsample[i]
K
Kaipeng Deng 已提交
148
            an_num = len(anchors) // 2
L
lxastro 已提交
149 150
            if self._iou_aware_loss is not None:
                ioup, output = self._split_ioup(output, an_num, num_classes)
K
Kaipeng Deng 已提交
151 152 153 154 155
            x, y, w, h, obj, cls = self._split_output(output, an_num,
                                                      num_classes)
            tx, ty, tw, th, tscale, tobj, tcls = self._split_target(target)

            tscale_tobj = tscale * tobj
K
Kaipeng Deng 已提交
156 157 158 159 160 161 162 163 164 165 166 167

            scale_x_y = self.scale_x_y if not isinstance(
                self.scale_x_y, Sequence) else self.scale_x_y[i]

            if (abs(scale_x_y - 1.0) < eps):
                loss_x = fluid.layers.sigmoid_cross_entropy_with_logits(
                    x, tx) * tscale_tobj
                loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
                loss_y = fluid.layers.sigmoid_cross_entropy_with_logits(
                    y, ty) * tscale_tobj
                loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])
            else:
168 169 170 171
                dx = scale_x_y * fluid.layers.sigmoid(x) - 0.5 * (scale_x_y -
                                                                  1.0)
                dy = scale_x_y * fluid.layers.sigmoid(y) - 0.5 * (scale_x_y -
                                                                  1.0)
K
Kaipeng Deng 已提交
172 173 174 175 176
                loss_x = fluid.layers.abs(dx - tx) * tscale_tobj
                loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
                loss_y = fluid.layers.abs(dy - ty) * tscale_tobj
                loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])

K
Kaipeng Deng 已提交
177 178 179 180 181
            # NOTE: we refined loss function of (w, h) as L1Loss
            loss_w = fluid.layers.abs(w - tw) * tscale_tobj
            loss_w = fluid.layers.reduce_sum(loss_w, dim=[1, 2, 3])
            loss_h = fluid.layers.abs(h - th) * tscale_tobj
            loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3])
C
CodesFarmer 已提交
182
            if self._iou_loss is not None:
183
                loss_iou = self._iou_loss(x, y, w, h, tx, ty, tw, th, anchors,
184
                                          downsample, self._train_batch_size,
185
                                          scale_x_y)
C
CodesFarmer 已提交
186 187 188
                loss_iou = loss_iou * tscale_tobj
                loss_iou = fluid.layers.reduce_sum(loss_iou, dim=[1, 2, 3])
                loss_ious.append(fluid.layers.reduce_mean(loss_iou))
K
Kaipeng Deng 已提交
189

L
lxastro 已提交
190 191 192
            if self._iou_aware_loss is not None:
                loss_iou_aware = self._iou_aware_loss(
                    ioup, x, y, w, h, tx, ty, tw, th, anchors, downsample,
193
                    self._train_batch_size, scale_x_y)
L
lxastro 已提交
194 195 196 197 198
                loss_iou_aware = loss_iou_aware * tobj
                loss_iou_aware = fluid.layers.reduce_sum(
                    loss_iou_aware, dim=[1, 2, 3])
                loss_iou_awares.append(fluid.layers.reduce_mean(loss_iou_aware))

K
Kaipeng Deng 已提交
199
            loss_obj_pos, loss_obj_neg = self._calc_obj_loss(
200
                output, obj, tobj, gt_box, self._train_batch_size, anchors,
W
wangguanzhong 已提交
201
                num_classes, downsample, self._ignore_thresh, scale_x_y)
K
Kaipeng Deng 已提交
202 203 204 205 206 207 208 209 210 211 212

            loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
            loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0)
            loss_cls = fluid.layers.reduce_sum(loss_cls, dim=[1, 2, 3, 4])

            loss_xys.append(fluid.layers.reduce_mean(loss_x + loss_y))
            loss_whs.append(fluid.layers.reduce_mean(loss_w + loss_h))
            loss_objs.append(
                fluid.layers.reduce_mean(loss_obj_pos + loss_obj_neg))
            loss_clss.append(fluid.layers.reduce_mean(loss_cls))

C
CodesFarmer 已提交
213
        losses_all = {
K
Kaipeng Deng 已提交
214 215 216 217 218
            "loss_xy": fluid.layers.sum(loss_xys),
            "loss_wh": fluid.layers.sum(loss_whs),
            "loss_obj": fluid.layers.sum(loss_objs),
            "loss_cls": fluid.layers.sum(loss_clss),
        }
C
CodesFarmer 已提交
219 220
        if self._iou_loss is not None:
            losses_all["loss_iou"] = fluid.layers.sum(loss_ious)
L
lxastro 已提交
221 222
        if self._iou_aware_loss is not None:
            losses_all["loss_iou_aware"] = fluid.layers.sum(loss_iou_awares)
C
CodesFarmer 已提交
223
        return losses_all
K
Kaipeng Deng 已提交
224

L
lxastro 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _split_ioup(self, output, an_num, num_classes):
        """
        Split output feature map to output, predicted iou
        along channel dimension
        """
        ioup = fluid.layers.slice(output, axes=[1], starts=[0], ends=[an_num])
        ioup = fluid.layers.sigmoid(ioup)
        oriout = fluid.layers.slice(
            output,
            axes=[1],
            starts=[an_num],
            ends=[an_num * (num_classes + 6)])
        return (ioup, oriout)

K
Kaipeng Deng 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    def _split_output(self, output, an_num, num_classes):
        """
        Split output feature map to x, y, w, h, objectness, classification
        along channel dimension
        """
        x = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[0],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        y = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[1],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        w = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[2],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        h = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[3],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        obj = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[4],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        clss = []
        stride = output.shape[1] // an_num
        for m in range(an_num):
            clss.append(
                fluid.layers.slice(
                    output,
                    axes=[1],
                    starts=[stride * m + 5],
                    ends=[stride * m + 5 + num_classes]))
        cls = fluid.layers.transpose(
            fluid.layers.stack(
                clss, axis=1), perm=[0, 1, 3, 4, 2])

        return (x, y, w, h, obj, cls)

    def _split_target(self, target):
        """
        split target to x, y, w, h, objectness, classification
        along dimension 2

        target is in shape [N, an_num, 6 + class_num, H, W]
        """
        tx = target[:, :, 0, :, :]
        ty = target[:, :, 1, :, :]
        tw = target[:, :, 2, :, :]
        th = target[:, :, 3, :, :]

        tscale = target[:, :, 4, :, :]
        tobj = target[:, :, 5, :, :]

        tcls = fluid.layers.transpose(
            target[:, :, 6:, :, :], perm=[0, 1, 3, 4, 2])
        tcls.stop_gradient = True

        return (tx, ty, tw, th, tscale, tobj, tcls)

    def _calc_obj_loss(self, output, obj, tobj, gt_box, batch_size, anchors,
W
wangguanzhong 已提交
311
                       num_classes, downsample, ignore_thresh, scale_x_y):
K
Kaipeng Deng 已提交
312 313 314 315 316
        # A prediction bbox overlap any gt_bbox over ignore_thresh, 
        # objectness loss will be ignored, process as follows:

        # 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
        # NOTE: img_size is set as 1.0 to get noramlized pred bbox
W
wangguanzhong 已提交
317
        bbox, prob = fluid.layers.yolo_box(
K
Kaipeng Deng 已提交
318 319 320 321 322 323 324
            x=output,
            img_size=fluid.layers.ones(
                shape=[batch_size, 2], dtype="int32"),
            anchors=anchors,
            class_num=num_classes,
            conf_thresh=0.,
            downsample_ratio=downsample,
W
wangguanzhong 已提交
325 326
            clip_bbox=False,
            scale_x_y=scale_x_y)
327

K
Kaipeng Deng 已提交
328 329 330 331 332 333 334 335
        # 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
        #    and gt bbox in each sample
        if batch_size > 1:
            preds = fluid.layers.split(bbox, batch_size, dim=0)
            gts = fluid.layers.split(gt_box, batch_size, dim=0)
        else:
            preds = [bbox]
            gts = [gt_box]
W
wangguanzhong 已提交
336
            probs = [prob]
K
Kaipeng Deng 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        ious = []
        for pred, gt in zip(preds, gts):

            def box_xywh2xyxy(box):
                x = box[:, 0]
                y = box[:, 1]
                w = box[:, 2]
                h = box[:, 3]
                return fluid.layers.stack(
                    [
                        x - w / 2.,
                        y - h / 2.,
                        x + w / 2.,
                        y + h / 2.,
                    ], axis=1)

            pred = fluid.layers.squeeze(pred, axes=[0])
            gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0]))
            ious.append(fluid.layers.iou_similarity(pred, gt))
356

W
wangguanzhong 已提交
357
        iou = fluid.layers.stack(ious, axis=0)
K
Kaipeng Deng 已提交
358 359
        # 3. Get iou_mask by IoU between gt bbox and prediction bbox,
        #    Get obj_mask by tobj(holds gt_score), calculate objectness loss
360

K
Kaipeng Deng 已提交
361 362
        max_iou = fluid.layers.reduce_max(iou, dim=-1)
        iou_mask = fluid.layers.cast(max_iou <= ignore_thresh, dtype="float32")
W
wangguanzhong 已提交
363 364 365
        if self.match_score:
            max_prob = fluid.layers.reduce_max(prob, dim=-1)
            iou_mask = iou_mask * fluid.layers.cast(
366
                max_prob <= 0.25, dtype="float32")
K
Kaipeng Deng 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        output_shape = fluid.layers.shape(output)
        an_num = len(anchors) // 2
        iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2],
                                                   output_shape[3]))
        iou_mask.stop_gradient = True

        # NOTE: tobj holds gt_score, obj_mask holds object existence mask
        obj_mask = fluid.layers.cast(tobj > 0., dtype="float32")
        obj_mask.stop_gradient = True

        # For positive objectness grids, objectness loss should be calculated
        # For negative objectness grids, objectness loss is calculated only iou_mask == 1.0
        loss_obj = fluid.layers.sigmoid_cross_entropy_with_logits(obj, obj_mask)
        loss_obj_pos = fluid.layers.reduce_sum(loss_obj * tobj, dim=[1, 2, 3])
        loss_obj_neg = fluid.layers.reduce_sum(
            loss_obj * (1.0 - obj_mask) * iou_mask, dim=[1, 2, 3])

        return loss_obj_pos, loss_obj_neg