yolo_loss.py 11.2 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from ppdet.core.workspace import register

__all__ = ['YOLOv3Loss']


@register
class YOLOv3Loss(object):
    """
    Combined loss for YOLOv3 network

    Args:
        batch_size (int): training batch size
        ignore_thresh (float): threshold to ignore confidence loss
        label_smooth (bool): whether to use label smoothing
        use_fine_grained_loss (bool): whether use fine grained YOLOv3 loss
                                      instead of fluid.layers.yolov3_loss
    """
    __shared__ = ['use_fine_grained_loss']

    def __init__(self,
                 batch_size=8,
                 ignore_thresh=0.7,
                 label_smooth=True,
                 use_fine_grained_loss=False):
        self._batch_size = batch_size
        self._ignore_thresh = ignore_thresh
        self._label_smooth = label_smooth
        self._use_fine_grained_loss = use_fine_grained_loss

    def __call__(self, outputs, gt_box, gt_label, gt_score, targets, anchors,
                 anchor_masks, mask_anchors, num_classes, prefix_name):
        if self._use_fine_grained_loss:
            return self._get_fine_grained_loss(
                outputs, targets, gt_box, self._batch_size, num_classes,
                mask_anchors, self._ignore_thresh)
        else:
            losses = []
            downsample = 32
            for i, output in enumerate(outputs):
                anchor_mask = anchor_masks[i]
                loss = fluid.layers.yolov3_loss(
                    x=output,
                    gt_box=gt_box,
                    gt_label=gt_label,
                    gt_score=gt_score,
                    anchors=anchors,
                    anchor_mask=anchor_mask,
                    class_num=num_classes,
                    ignore_thresh=self._ignore_thresh,
                    downsample_ratio=downsample,
                    use_label_smooth=self._label_smooth,
                    name=prefix_name + "yolo_loss" + str(i))
                losses.append(fluid.layers.reduce_mean(loss))
                downsample //= 2

            return {'loss': sum(losses)}

    def _get_fine_grained_loss(self, outputs, targets, gt_box, batch_size,
                               num_classes, mask_anchors, ignore_thresh):
        """
        Calculate fine grained YOLOv3 loss

        Args:
            outputs ([Variables]): List of Variables, output of backbone stages
            targets ([Variables]): List of Variables, The targets for yolo
                                   loss calculatation.
            gt_box (Variable): The ground-truth boudding boxes.
            batch_size (int): The training batch size
            num_classes (int): class num of dataset
            mask_anchors ([[float]]): list of anchors in each output layer
            ignore_thresh (float): prediction bbox overlap any gt_box greater
                                   than ignore_thresh, objectness loss will
                                   be ignored.

        Returns:
            Type: dict
                xy_loss (Variable): YOLOv3 (x, y) coordinates loss
                wh_loss (Variable): YOLOv3 (w, h) coordinates loss
                obj_loss (Variable): YOLOv3 objectness score loss
                cls_loss (Variable): YOLOv3 classification loss

        """

        assert len(outputs) == len(targets), \
            "YOLOv3 output layer number not equal target number"

        downsample = 32
        loss_xys, loss_whs, loss_objs, loss_clss = [], [], [], []
        for i, (output, target,
                anchors) in enumerate(zip(outputs, targets, mask_anchors)):
            an_num = len(anchors) // 2
            x, y, w, h, obj, cls = self._split_output(output, an_num,
                                                      num_classes)
            tx, ty, tw, th, tscale, tobj, tcls = self._split_target(target)

            tscale_tobj = tscale * tobj
            loss_x = fluid.layers.sigmoid_cross_entropy_with_logits(
                x, tx) * tscale_tobj
            loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
            loss_y = fluid.layers.sigmoid_cross_entropy_with_logits(
                y, ty) * tscale_tobj
            loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])
            # NOTE: we refined loss function of (w, h) as L1Loss
            loss_w = fluid.layers.abs(w - tw) * tscale_tobj
            loss_w = fluid.layers.reduce_sum(loss_w, dim=[1, 2, 3])
            loss_h = fluid.layers.abs(h - th) * tscale_tobj
            loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3])

            loss_obj_pos, loss_obj_neg = self._calc_obj_loss(
                output, obj, tobj, gt_box, self._batch_size, anchors,
                num_classes, downsample, self._ignore_thresh)

            loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
            loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0)
            loss_cls = fluid.layers.reduce_sum(loss_cls, dim=[1, 2, 3, 4])

            loss_xys.append(fluid.layers.reduce_mean(loss_x + loss_y))
            loss_whs.append(fluid.layers.reduce_mean(loss_w + loss_h))
            loss_objs.append(
                fluid.layers.reduce_mean(loss_obj_pos + loss_obj_neg))
            loss_clss.append(fluid.layers.reduce_mean(loss_cls))

            downsample //= 2

        return {
            "loss_xy": fluid.layers.sum(loss_xys),
            "loss_wh": fluid.layers.sum(loss_whs),
            "loss_obj": fluid.layers.sum(loss_objs),
            "loss_cls": fluid.layers.sum(loss_clss),
        }

    def _split_output(self, output, an_num, num_classes):
        """
        Split output feature map to x, y, w, h, objectness, classification
        along channel dimension
        """
        x = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[0],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        y = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[1],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        w = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[2],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        h = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[3],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        obj = fluid.layers.strided_slice(
            output,
            axes=[1],
            starts=[4],
            ends=[output.shape[1]],
            strides=[5 + num_classes])
        clss = []
        stride = output.shape[1] // an_num
        for m in range(an_num):
            clss.append(
                fluid.layers.slice(
                    output,
                    axes=[1],
                    starts=[stride * m + 5],
                    ends=[stride * m + 5 + num_classes]))
        cls = fluid.layers.transpose(
            fluid.layers.stack(
                clss, axis=1), perm=[0, 1, 3, 4, 2])

        return (x, y, w, h, obj, cls)

    def _split_target(self, target):
        """
        split target to x, y, w, h, objectness, classification
        along dimension 2

        target is in shape [N, an_num, 6 + class_num, H, W]
        """
        tx = target[:, :, 0, :, :]
        ty = target[:, :, 1, :, :]
        tw = target[:, :, 2, :, :]
        th = target[:, :, 3, :, :]

        tscale = target[:, :, 4, :, :]
        tobj = target[:, :, 5, :, :]

        tcls = fluid.layers.transpose(
            target[:, :, 6:, :, :], perm=[0, 1, 3, 4, 2])
        tcls.stop_gradient = True

        return (tx, ty, tw, th, tscale, tobj, tcls)

    def _calc_obj_loss(self, output, obj, tobj, gt_box, batch_size, anchors,
                       num_classes, downsample, ignore_thresh):
        # A prediction bbox overlap any gt_bbox over ignore_thresh, 
        # objectness loss will be ignored, process as follows:

        # 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
        # NOTE: img_size is set as 1.0 to get noramlized pred bbox
        bbox, _ = fluid.layers.yolo_box(
            x=output,
            img_size=fluid.layers.ones(
                shape=[batch_size, 2], dtype="int32"),
            anchors=anchors,
            class_num=num_classes,
            conf_thresh=0.,
            downsample_ratio=downsample,
            clip_bbox=False)

        # 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
        #    and gt bbox in each sample
        if batch_size > 1:
            preds = fluid.layers.split(bbox, batch_size, dim=0)
            gts = fluid.layers.split(gt_box, batch_size, dim=0)
        else:
            preds = [bbox]
            gts = [gt_box]
        ious = []
        for pred, gt in zip(preds, gts):

            def box_xywh2xyxy(box):
                x = box[:, 0]
                y = box[:, 1]
                w = box[:, 2]
                h = box[:, 3]
                return fluid.layers.stack(
                    [
                        x - w / 2.,
                        y - h / 2.,
                        x + w / 2.,
                        y + h / 2.,
                    ], axis=1)

            pred = fluid.layers.squeeze(pred, axes=[0])
            gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0]))
            ious.append(fluid.layers.iou_similarity(pred, gt))
        iou = fluid.layers.stack(ious, axis=0)

        # 3. Get iou_mask by IoU between gt bbox and prediction bbox,
        #    Get obj_mask by tobj(holds gt_score), calculate objectness loss
        max_iou = fluid.layers.reduce_max(iou, dim=-1)
        iou_mask = fluid.layers.cast(max_iou <= ignore_thresh, dtype="float32")
        output_shape = fluid.layers.shape(output)
        an_num = len(anchors) // 2
        iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2],
                                                   output_shape[3]))
        iou_mask.stop_gradient = True

        # NOTE: tobj holds gt_score, obj_mask holds object existence mask
        obj_mask = fluid.layers.cast(tobj > 0., dtype="float32")
        obj_mask.stop_gradient = True

        # For positive objectness grids, objectness loss should be calculated
        # For negative objectness grids, objectness loss is calculated only iou_mask == 1.0
        loss_obj = fluid.layers.sigmoid_cross_entropy_with_logits(obj, obj_mask)
        loss_obj_pos = fluid.layers.reduce_sum(loss_obj * tobj, dim=[1, 2, 3])
        loss_obj_neg = fluid.layers.reduce_sum(
            loss_obj * (1.0 - obj_mask) * iou_mask, dim=[1, 2, 3])

        return loss_obj_pos, loss_obj_neg