Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1475bb05
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1475bb05
编写于
2月 06, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
2月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
exit 1 when travis check failed (#214)
* exit1 in travis failed
上级
fcfdbd2e
变更
16
展开全部
隐藏空白更改
内联
并排
Showing
16 changed file
with
982 addition
and
873 deletion
+982
-873
.travis.yml
.travis.yml
+1
-0
.travis/requirements.txt
.travis/requirements.txt
+3
-0
.travis/unittest.sh
.travis/unittest.sh
+6
-3
inference/tools/detection_result_pb2.py
inference/tools/detection_result_pb2.py
+14
-14
inference/tools/vis.py
inference/tools/vis.py
+4
-4
ppdet/core/config/schema.py
ppdet/core/config/schema.py
+5
-0
ppdet/data/tools/x2coco.py
ppdet/data/tools/x2coco.py
+3
-5
ppdet/modeling/backbones/cb_resnet.py
ppdet/modeling/backbones/cb_resnet.py
+51
-40
ppdet/modeling/backbones/hrfpn.py
ppdet/modeling/backbones/hrfpn.py
+44
-38
ppdet/modeling/backbones/hrnet.py
ppdet/modeling/backbones/hrnet.py
+196
-142
ppdet/modeling/backbones/res2net.py
ppdet/modeling/backbones/res2net.py
+77
-71
ppdet/modeling/losses/iou_loss.py
ppdet/modeling/losses/iou_loss.py
+27
-16
ppdet/modeling/losses/yolo_loss.py
ppdet/modeling/losses/yolo_loss.py
+2
-2
ppdet/modeling/roi_heads/cascade_head.py
ppdet/modeling/roi_heads/cascade_head.py
+18
-14
ppdet/utils/oid_eval.py
ppdet/utils/oid_eval.py
+504
-505
slim/sensitive/sensitive.py
slim/sensitive/sensitive.py
+27
-19
未找到文件。
.travis.yml
浏览文件 @
1475bb05
...
...
@@ -26,6 +26,7 @@ script:
-
.travis/precommit.sh || exit_code=$(( exit_code | $? ))
-
docker run -i --rm -v "$PWD:/py_unittest" paddlepaddle/paddle:latest /bin/bash -c
'cd /py_unittest; sh .travis/unittest.sh' || exit_code=$(( exit_code | $? ))
-
if [ $exit_code -eq 0 ]; then
true
; else exit 1; fi;
notifications
:
email
:
...
...
.travis/requirements.txt
0 → 100644
浏览文件 @
1475bb05
# add python requirements for unittests here, note install Cython
# and pycocotools directly is not supported in travis ci.
tqdm
.travis/unittest.sh
浏览文件 @
1475bb05
...
...
@@ -3,6 +3,8 @@
abort
(){
echo
"Run unittest failed"
1>&2
echo
"Please check your code"
1>&2
echo
" 1. you can run unit tests by 'bash .travis/unittest.sh' locally"
1>&2
echo
" 2. you can add python requirements in .travis/requirements.txt if you use new requirements in unit tests"
1>&2
exit
1
}
...
...
@@ -18,10 +20,11 @@ unittest(){
trap
'abort'
0
set
-e
# install python dependencies
if
[
-f
"requirements.txt"
]
;
then
pip
install
-r
requirements.txt
# install
travis
python dependencies
if
[
-f
"
.travis/
requirements.txt"
]
;
then
pip
install
-r
.travis/
requirements.txt
fi
export
PYTHONPATH
=
`
pwd
`
:
$PYTHONPATH
unittest
.
...
...
inference/tools/detection_result_pb2.py
浏览文件 @
1475bb05
...
...
@@ -134,8 +134,7 @@ _DETECTIONBOX = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[],
serialized_start
=
43
,
serialized_end
=
175
,
)
serialized_end
=
175
)
_DETECTIONRESULT
=
_descriptor
.
Descriptor
(
name
=
'DetectionResult'
,
...
...
@@ -186,8 +185,7 @@ _DETECTIONRESULT = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[],
serialized_start
=
177
,
serialized_end
=
267
,
)
serialized_end
=
267
)
_DETECTIONRESULT
.
fields_by_name
[
'detection_boxes'
].
message_type
=
_DETECTIONBOX
DESCRIPTOR
.
message_types_by_name
[
'DetectionBox'
]
=
_DETECTIONBOX
...
...
@@ -195,20 +193,22 @@ DESCRIPTOR.message_types_by_name['DetectionResult'] = _DETECTIONRESULT
DetectionBox
=
_reflection
.
GeneratedProtocolMessageType
(
'DetectionBox'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_DETECTIONBOX
,
__module__
=
'detection_result_pb2'
# @@protoc_insertion_point(class_scope:PaddleSolution.DetectionBox)
))
(
_message
.
Message
,
),
dict
(
DESCRIPTOR
=
_DETECTIONBOX
,
__module__
=
'detection_result_pb2'
# @@protoc_insertion_point(class_scope:PaddleSolution.DetectionBox)
))
_sym_db
.
RegisterMessage
(
DetectionBox
)
DetectionResult
=
_reflection
.
GeneratedProtocolMessageType
(
'DetectionResult'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_DETECTIONRESULT
,
__module__
=
'detection_result_pb2'
# @@protoc_insertion_point(class_scope:PaddleSolution.DetectionResult)
))
(
_message
.
Message
,
),
dict
(
DESCRIPTOR
=
_DETECTIONRESULT
,
__module__
=
'detection_result_pb2'
# @@protoc_insertion_point(class_scope:PaddleSolution.DetectionResult)
))
_sym_db
.
RegisterMessage
(
DetectionResult
)
# @@protoc_insertion_point(module_scope)
inference/tools/vis.py
浏览文件 @
1475bb05
...
...
@@ -85,8 +85,8 @@ if __name__ == "__main__":
for
box
in
detection_result
.
detection_boxes
:
if
box
.
score
>=
Flags
.
threshold
:
box_class
=
getattr
(
box
,
'class'
)
text_class_score_str
=
"%s %.2f"
%
(
class2LabelMap
.
get
(
str
(
box_class
)),
box
.
score
)
text_class_score_str
=
"%s %.2f"
%
(
class2LabelMap
.
get
(
str
(
box_class
)),
box
.
score
)
text_point
=
(
int
(
box
.
left_top_x
),
int
(
box
.
left_top_y
))
ptLeftTop
=
(
int
(
box
.
left_top_x
),
int
(
box
.
left_top_y
))
...
...
@@ -106,8 +106,8 @@ if __name__ == "__main__":
text_box_left_top
=
(
text_point
[
0
],
text_point
[
1
]
-
text_size
[
0
][
1
])
text_box_right_bottom
=
(
text_point
[
0
]
+
text_size
[
0
][
0
],
text_point
[
1
])
text_box_right_bottom
=
(
text_point
[
0
]
+
text_size
[
0
][
0
],
text_point
[
1
])
cv2
.
rectangle
(
img
,
text_box_left_top
,
text_box_right_bottom
,
color
,
-
1
,
8
)
...
...
ppdet/core/config/schema.py
浏览文件 @
1475bb05
...
...
@@ -23,14 +23,19 @@ import re
try
:
from
docstring_parser
import
parse
as
doc_parse
except
Exception
:
def
doc_parse
(
*
args
):
pass
try
:
from
typeguard
import
check_type
except
Exception
:
def
check_type
(
*
args
):
pass
__all__
=
[
'SchemaValue'
,
'SchemaDict'
,
'SharedConfig'
,
'extract_schema'
]
...
...
ppdet/data/tools/x2coco.py
浏览文件 @
1475bb05
...
...
@@ -25,11 +25,11 @@ import shutil
import
numpy
as
np
import
PIL.ImageDraw
label_to_num
=
{}
categories_list
=
[]
labels_list
=
[]
class
MyEncoder
(
json
.
JSONEncoder
):
def
default
(
self
,
obj
):
if
isinstance
(
obj
,
np
.
integer
):
...
...
@@ -287,16 +287,14 @@ def main():
indent
=
4
,
cls
=
MyEncoder
)
if
args
.
val_proportion
!=
0
:
val_data_coco
=
deal_json
(
args
.
dataset_type
,
args
.
output_dir
+
'/val'
,
val_data_coco
=
deal_json
(
args
.
dataset_type
,
args
.
output_dir
+
'/val'
,
args
.
json_input_dir
)
val_json_path
=
osp
.
join
(
args
.
output_dir
+
'/annotations'
,
'instance_val.json'
)
json
.
dump
(
val_data_coco
,
open
(
val_json_path
,
'w'
),
indent
=
4
,
cls
=
MyEncoder
)
if
args
.
test_proportion
!=
0
:
test_data_coco
=
deal_json
(
args
.
dataset_type
,
args
.
output_dir
+
'/test'
,
test_data_coco
=
deal_json
(
args
.
dataset_type
,
args
.
output_dir
+
'/test'
,
args
.
json_input_dir
)
test_json_path
=
osp
.
join
(
args
.
output_dir
+
'/annotations'
,
'instance_test.json'
)
...
...
ppdet/modeling/backbones/cb_resnet.py
浏览文件 @
1475bb05
...
...
@@ -64,8 +64,8 @@ class CBResNet(object):
variant
=
'b'
,
feature_maps
=
[
2
,
3
,
4
,
5
],
dcn_v2_stages
=
[],
nonlocal_stages
=
[],
repeat_num
=
2
):
nonlocal_stages
=
[],
repeat_num
=
2
):
super
(
CBResNet
,
self
).
__init__
()
if
isinstance
(
feature_maps
,
Integral
):
...
...
@@ -102,19 +102,26 @@ class CBResNet(object):
self
.
nonlocal_stages
=
nonlocal_stages
self
.
nonlocal_mod_cfg
=
{
50
:
2
,
101
:
5
,
152
:
8
,
200
:
12
,
50
:
2
,
101
:
5
,
152
:
8
,
200
:
12
,
}
self
.
stage_filters
=
[
64
,
128
,
256
,
512
]
self
.
_c1_out_chan_num
=
64
self
.
na
=
NameAdapter
(
self
)
def
_conv_offset
(
self
,
input
,
filter_size
,
stride
,
padding
,
act
=
None
,
name
=
None
):
def
_conv_offset
(
self
,
input
,
filter_size
,
stride
,
padding
,
act
=
None
,
name
=
None
):
out_channel
=
filter_size
*
filter_size
*
3
out
=
fluid
.
layers
.
conv2d
(
input
,
out
=
fluid
.
layers
.
conv2d
(
input
,
num_filters
=
out_channel
,
filter_size
=
filter_size
,
stride
=
stride
,
...
...
@@ -145,7 +152,8 @@ class CBResNet(object):
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights_"
+
str
(
self
.
curr_level
)),
param_attr
=
ParamAttr
(
name
=
name
+
"_weights_"
+
str
(
self
.
curr_level
)),
bias_attr
=
False
)
else
:
offset_mask
=
self
.
_conv_offset
(
...
...
@@ -155,8 +163,8 @@ class CBResNet(object):
padding
=
(
filter_size
-
1
)
//
2
,
act
=
None
,
name
=
name
+
"_conv_offset_"
+
str
(
self
.
curr_level
))
offset_channel
=
filter_size
**
2
*
2
mask_channel
=
filter_size
**
2
offset_channel
=
filter_size
**
2
*
2
mask_channel
=
filter_size
**
2
offset
,
mask
=
fluid
.
layers
.
split
(
input
=
offset_mask
,
num_or_sections
=
[
offset_channel
,
mask_channel
],
...
...
@@ -173,7 +181,8 @@ class CBResNet(object):
groups
=
groups
,
deformable_groups
=
1
,
im2col_step
=
1
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights_"
+
str
(
self
.
curr_level
)),
param_attr
=
ParamAttr
(
name
=
name
+
"_weights_"
+
str
(
self
.
curr_level
)),
bias_attr
=
False
)
bn_name
=
self
.
na
.
fix_conv_norm_name
(
name
)
...
...
@@ -181,11 +190,11 @@ class CBResNet(object):
norm_lr
=
0.
if
self
.
freeze_norm
else
1.
norm_decay
=
self
.
norm_decay
pattr
=
ParamAttr
(
name
=
bn_name
+
'_scale_'
+
str
(
self
.
curr_level
),
name
=
bn_name
+
'_scale_'
+
str
(
self
.
curr_level
),
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
battr
=
ParamAttr
(
name
=
bn_name
+
'_offset_'
+
str
(
self
.
curr_level
),
name
=
bn_name
+
'_offset_'
+
str
(
self
.
curr_level
),
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
...
...
@@ -194,11 +203,12 @@ class CBResNet(object):
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
name
=
bn_name
+
'.output.1_'
+
str
(
self
.
curr_level
),
name
=
bn_name
+
'.output.1_'
+
str
(
self
.
curr_level
),
param_attr
=
pattr
,
bias_attr
=
battr
,
moving_mean_name
=
bn_name
+
'_mean_'
+
str
(
self
.
curr_level
),
moving_variance_name
=
bn_name
+
'_variance_'
+
str
(
self
.
curr_level
),
moving_mean_name
=
bn_name
+
'_mean_'
+
str
(
self
.
curr_level
),
moving_variance_name
=
bn_name
+
'_variance_'
+
str
(
self
.
curr_level
),
use_global_stats
=
global_stats
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
...
...
@@ -262,7 +272,7 @@ class CBResNet(object):
act
=
act
,
groups
=
g
,
name
=
_name
,
dcn
=
(
i
==
1
and
dcn
))
dcn
=
(
i
==
1
and
dcn
))
short
=
self
.
_shortcut
(
input
,
num_filters
*
expand
,
...
...
@@ -273,8 +283,7 @@ class CBResNet(object):
if
callable
(
getattr
(
self
,
'_squeeze_excitation'
,
None
)):
residual
=
self
.
_squeeze_excitation
(
input
=
residual
,
num_channels
=
num_filters
,
name
=
'fc'
+
name
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
residual
,
act
=
'relu'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
residual
,
act
=
'relu'
)
def
basicblock
(
self
,
input
,
num_filters
,
stride
,
is_first
,
name
,
dcn
=
False
):
assert
dcn
is
False
,
"Not implemented yet."
...
...
@@ -313,10 +322,10 @@ class CBResNet(object):
is_first
=
False
if
stage_num
!=
2
else
True
dcn
=
True
if
stage_num
in
self
.
dcn_v2_stages
else
False
nonlocal_mod
=
1000
if
stage_num
in
self
.
nonlocal_stages
:
nonlocal_mod
=
self
.
nonlocal_mod_cfg
[
self
.
depth
]
if
stage_num
==
4
else
2
nonlocal_mod
=
self
.
nonlocal_mod_cfg
[
self
.
depth
]
if
stage_num
==
4
else
2
# Make the layer name and parameter name consistent
# with ImageNet pre-trained model
...
...
@@ -335,11 +344,12 @@ class CBResNet(object):
# add non local model
dim_in
=
conv
.
shape
[
1
]
nonlocal_name
=
"nonlocal_conv{}_lvl{}"
.
format
(
stage_num
,
self
.
curr_level
)
nonlocal_name
=
"nonlocal_conv{}_lvl{}"
.
format
(
stage_num
,
self
.
curr_level
)
if
i
%
nonlocal_mod
==
nonlocal_mod
-
1
:
conv
=
add_space_nonlocal
(
conv
,
dim_in
,
dim_in
,
nonlocal_name
+
'_{}'
.
format
(
i
),
int
(
dim_in
/
2
)
)
conv
=
add_space_nonlocal
(
conv
,
dim_in
,
dim_in
,
nonlocal_name
+
'_{}'
.
format
(
i
)
,
int
(
dim_in
/
2
)
)
return
conv
...
...
@@ -349,9 +359,9 @@ class CBResNet(object):
conv1_name
=
self
.
na
.
fix_c1_stage_name
()
if
self
.
variant
in
[
'c'
,
'd'
]:
conv1_1_name
=
"conv1_1"
conv1_2_name
=
"conv1_2"
conv1_3_name
=
"conv1_3"
conv1_1_name
=
"conv1_1"
conv1_2_name
=
"conv1_2"
conv1_3_name
=
"conv1_3"
conv_def
=
[
[
out_chan
//
2
,
3
,
2
,
conv1_1_name
],
[
out_chan
//
2
,
3
,
1
,
conv1_2_name
],
...
...
@@ -377,14 +387,15 @@ class CBResNet(object):
pool_type
=
'max'
)
return
output
def
connect
(
self
,
left
,
right
,
name
):
def
connect
(
self
,
left
,
right
,
name
):
ch_right
=
right
.
shape
[
1
]
conv
=
self
.
_conv_norm
(
left
,
num_filters
=
ch_right
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
,
name
=
name
+
"_connect"
)
conv
=
self
.
_conv_norm
(
left
,
num_filters
=
ch_right
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
,
name
=
name
+
"_connect"
)
shape
=
fluid
.
layers
.
shape
(
right
)
shape_hw
=
fluid
.
layers
.
slice
(
shape
,
axes
=
[
0
],
starts
=
[
2
],
ends
=
[
4
])
out_shape_
=
shape_hw
...
...
@@ -414,11 +425,11 @@ class CBResNet(object):
for
num
in
range
(
1
,
self
.
repeat_num
):
self
.
curr_level
=
num
res
=
self
.
c1_stage
(
input
)
for
i
in
range
(
len
(
res_endpoints
)
):
res
=
self
.
connect
(
res_endpoints
[
i
],
res
,
"test_c"
+
str
(
i
+
1
)
)
res
=
self
.
layer_warp
(
res
,
i
+
2
)
for
i
in
range
(
len
(
res_endpoints
)
):
res
=
self
.
connect
(
res_endpoints
[
i
],
res
,
"test_c"
+
str
(
i
+
1
)
)
res
=
self
.
layer_warp
(
res
,
i
+
2
)
res_endpoints
[
i
]
=
res
if
self
.
freeze_at
>=
i
+
2
:
if
self
.
freeze_at
>=
i
+
2
:
res
.
stop_gradient
=
True
return
OrderedDict
([(
'res{}_sum'
.
format
(
self
.
feature_maps
[
idx
]),
feat
)
...
...
ppdet/modeling/backbones/hrfpn.py
浏览文件 @
1475bb05
...
...
@@ -40,35 +40,36 @@ class HRFPN(object):
spatial_scale (list): feature map scaling factor
"""
def
__init__
(
self
,
num_chan
=
256
,
pooling_type
=
"avg"
,
share_conv
=
False
,
spatial_scale
=
[
1.
/
64
,
1.
/
32
,
1.
/
16
,
1.
/
8
,
1.
/
4
]
,
):
def
__init__
(
self
,
num_chan
=
256
,
pooling_type
=
"avg"
,
share_conv
=
False
,
spatial_scale
=
[
1.
/
64
,
1.
/
32
,
1.
/
16
,
1.
/
8
,
1.
/
4
],
):
self
.
num_chan
=
num_chan
self
.
pooling_type
=
pooling_type
self
.
share_conv
=
share_conv
self
.
spatial_scale
=
spatial_scale
return
def
get_output
(
self
,
body_dict
):
num_out
=
len
(
self
.
spatial_scale
)
body_name_list
=
list
(
body_dict
.
keys
())
num_backbone_stages
=
len
(
body_name_list
)
outs
=
[]
outs
.
append
(
body_dict
[
body_name_list
[
0
]])
# resize
for
i
in
range
(
1
,
len
(
body_dict
)):
resized
=
self
.
resize_input_tensor
(
body_dict
[
body_name_list
[
i
]],
outs
[
0
],
2
**
i
)
outs
.
append
(
resized
)
resized
=
self
.
resize_input_tensor
(
body_dict
[
body_name_list
[
i
]],
outs
[
0
],
2
**
i
)
outs
.
append
(
resized
)
# concat
out
=
fluid
.
layers
.
concat
(
outs
,
axis
=
1
)
out
=
fluid
.
layers
.
concat
(
outs
,
axis
=
1
)
# reduction
out
=
fluid
.
layers
.
conv2d
(
input
=
out
,
...
...
@@ -78,34 +79,40 @@ class HRFPN(object):
padding
=
0
,
param_attr
=
ParamAttr
(
name
=
'hrfpn_reduction_weights'
),
bias_attr
=
False
)
# conv
outs
=
[
out
]
for
i
in
range
(
1
,
num_out
):
outs
.
append
(
self
.
pooling
(
out
,
size
=
2
**
i
,
stride
=
2
**
i
,
pooling_type
=
self
.
pooling_type
))
outs
.
append
(
self
.
pooling
(
out
,
size
=
2
**
i
,
stride
=
2
**
i
,
pooling_type
=
self
.
pooling_type
))
outputs
=
[]
for
i
in
range
(
num_out
):
conv_name
=
"shared_fpn_conv"
if
self
.
share_conv
else
"shared_fpn_conv_"
+
str
(
i
)
conv_name
=
"shared_fpn_conv"
if
self
.
share_conv
else
"shared_fpn_conv_"
+
str
(
i
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
outs
[
i
],
num_filters
=
self
.
num_chan
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
param_attr
=
ParamAttr
(
name
=
conv_name
+
"_weights"
),
bias_attr
=
False
)
outputs
.
append
(
conv
)
for
idx
in
range
(
0
,
num_out
-
len
(
body_name_list
)):
body_name_list
.
append
(
"fpn_res5_sum_subsampled_{}x"
.
format
(
2
**
(
idx
+
1
)
))
input
=
outs
[
i
],
num_filters
=
self
.
num_chan
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
param_attr
=
ParamAttr
(
name
=
conv_name
+
"_weights"
),
bias_attr
=
False
)
outputs
.
append
(
conv
)
for
idx
in
range
(
0
,
num_out
-
len
(
body_name_list
)):
body_name_list
.
append
(
"fpn_res5_sum_subsampled_{}x"
.
format
(
2
**
(
idx
+
1
)))
outputs
=
outputs
[::
-
1
]
body_name_list
=
body_name_list
[::
-
1
]
res_dict
=
OrderedDict
([(
body_name_list
[
k
],
outputs
[
k
])
for
k
in
range
(
len
(
body_name_list
))])
res_dict
=
OrderedDict
([(
body_name_list
[
k
],
outputs
[
k
])
for
k
in
range
(
len
(
body_name_list
))])
return
res_dict
,
self
.
spatial_scale
def
resize_input_tensor
(
self
,
body_input
,
ref_output
,
scale
):
shape
=
fluid
.
layers
.
shape
(
ref_output
)
shape_hw
=
fluid
.
layers
.
slice
(
shape
,
axes
=
[
0
],
starts
=
[
2
],
ends
=
[
4
])
...
...
@@ -115,12 +122,11 @@ class HRFPN(object):
body_output
=
fluid
.
layers
.
resize_bilinear
(
body_input
,
scale
=
scale
,
actual_shape
=
out_shape
)
return
body_output
def
pooling
(
self
,
input
,
size
,
stride
,
pooling_type
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
size
,
pool_stride
=
stride
,
pool_type
=
pooling_type
)
return
pool
\ No newline at end of file
ppdet/modeling/backbones/hrnet.py
浏览文件 @
1475bb05
...
...
@@ -64,7 +64,7 @@ class HRNet(object):
assert
0
<=
freeze_at
<=
4
,
"freeze_at should be 0, 1, 2, 3 or 4"
assert
len
(
feature_maps
)
>
0
,
"need one or more feature maps"
assert
norm_type
in
[
'bn'
,
'sync_bn'
]
self
.
width
=
width
self
.
has_se
=
has_se
self
.
channels
=
{
...
...
@@ -76,7 +76,7 @@ class HRNet(object):
48
:
[[
48
,
96
],
[
48
,
96
,
192
],
[
48
,
96
,
192
,
384
]],
60
:
[[
60
,
120
],
[
60
,
120
,
240
],
[
60
,
120
,
240
,
480
]],
64
:
[[
64
,
128
],
[
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]],
}
}
self
.
freeze_at
=
freeze_at
self
.
norm_type
=
norm_type
...
...
@@ -86,24 +86,26 @@ class HRNet(object):
self
.
feature_maps
=
feature_maps
self
.
end_points
=
[]
return
def
net
(
self
,
input
,
class_dim
=
1000
):
width
=
self
.
width
channels_2
,
channels_3
,
channels_4
=
self
.
channels
[
width
]
channels_2
,
channels_3
,
channels_4
=
self
.
channels
[
width
]
num_modules_2
,
num_modules_3
,
num_modules_4
=
1
,
4
,
3
x
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_1'
)
x
=
self
.
conv_bn_layer
(
input
=
x
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_2'
)
x
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_1'
)
x
=
self
.
conv_bn_layer
(
input
=
x
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_2'
)
la1
=
self
.
layer1
(
x
,
name
=
'layer2'
)
tr1
=
self
.
transition_layer
([
la1
],
[
256
],
channels_2
,
name
=
'tr1'
)
...
...
@@ -112,19 +114,20 @@ class HRNet(object):
st3
=
self
.
stage
(
tr2
,
num_modules_3
,
channels_3
,
name
=
'st3'
)
tr3
=
self
.
transition_layer
(
st3
,
channels_3
,
channels_4
,
name
=
'tr3'
)
st4
=
self
.
stage
(
tr3
,
num_modules_4
,
channels_4
,
name
=
'st4'
)
self
.
end_points
=
st4
return
st4
[
-
1
]
def
layer1
(
self
,
input
,
name
=
None
):
conv
=
input
for
i
in
range
(
4
):
conv
=
self
.
bottleneck_block
(
conv
,
num_filters
=
64
,
downsample
=
True
if
i
==
0
else
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
conv
=
self
.
bottleneck_block
(
conv
,
num_filters
=
64
,
downsample
=
True
if
i
==
0
else
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
conv
def
transition_layer
(
self
,
x
,
in_channels
,
out_channels
,
name
=
None
):
num_in
=
len
(
in_channels
)
num_out
=
len
(
out_channels
)
...
...
@@ -132,19 +135,21 @@ class HRNet(object):
for
i
in
range
(
num_out
):
if
i
<
num_in
:
if
in_channels
[
i
]
!=
out_channels
[
i
]:
residual
=
self
.
conv_bn_layer
(
x
[
i
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
residual
=
self
.
conv_bn_layer
(
x
[
i
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
else
:
out
.
append
(
x
[
i
])
else
:
residual
=
self
.
conv_bn_layer
(
x
[
-
1
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
residual
=
self
.
conv_bn_layer
(
x
[
-
1
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
return
out
...
...
@@ -153,9 +158,11 @@ class HRNet(object):
for
i
in
range
(
len
(
channels
)):
residual
=
x
[
i
]
for
j
in
range
(
block_num
):
residual
=
self
.
basic_block
(
residual
,
channels
[
i
],
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
residual
=
self
.
basic_block
(
residual
,
channels
[
i
],
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
out
.
append
(
residual
)
return
out
...
...
@@ -165,167 +172,215 @@ class HRNet(object):
residual
=
x
[
i
]
for
j
in
range
(
len
(
channels
)):
if
j
>
i
:
y
=
self
.
conv_bn_layer
(
x
[
j
],
filter_size
=
1
,
num_filters
=
channels
[
i
],
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
y
=
fluid
.
layers
.
resize_nearest
(
input
=
y
,
scale
=
2
**
(
j
-
i
))
y
=
self
.
conv_bn_layer
(
x
[
j
],
filter_size
=
1
,
num_filters
=
channels
[
i
],
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
y
=
fluid
.
layers
.
resize_nearest
(
input
=
y
,
scale
=
2
**
(
j
-
i
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
elif
j
<
i
:
y
=
x
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
i
],
stride
=
2
,
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
i
],
stride
=
2
,
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
else
:
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
j
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
y
=
self
.
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
j
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
x
=
residual
,
y
=
y
,
act
=
None
)
residual
=
fluid
.
layers
.
relu
(
residual
)
out
.
append
(
residual
)
return
out
def
high_resolution_module
(
self
,
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
def
high_resolution_module
(
self
,
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
residual
=
self
.
branches
(
x
,
4
,
channels
,
name
=
name
)
out
=
self
.
fuse_layers
(
residual
,
channels
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
out
=
self
.
fuse_layers
(
residual
,
channels
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
return
out
def
stage
(
self
,
x
,
num_modules
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
def
stage
(
self
,
x
,
num_modules
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
x
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
multi_scale_output
==
False
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
out
=
self
.
high_resolution_module
(
out
,
channels
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
else
:
out
=
self
.
high_resolution_module
(
out
,
channels
,
name
=
name
+
'_'
+
str
(
i
+
1
))
out
=
self
.
high_resolution_module
(
out
,
channels
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
out
def
last_cls_out
(
self
,
x
,
name
=
None
):
out
=
[]
num_filters_list
=
[
128
,
256
,
512
,
1024
]
for
i
in
range
(
len
(
x
)):
out
.
append
(
self
.
conv_bn_layer
(
input
=
x
[
i
],
filter_size
=
1
,
num_filters
=
num_filters_list
[
i
],
name
=
name
+
'conv_'
+
str
(
i
+
1
)))
out
.
append
(
self
.
conv_bn_layer
(
input
=
x
[
i
],
filter_size
=
1
,
num_filters
=
num_filters_list
[
i
],
name
=
name
+
'conv_'
+
str
(
i
+
1
)))
return
out
def
basic_block
(
self
,
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
def
basic_block
(
self
,
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_conv2'
)
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_conv2'
)
if
downsample
:
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
input
=
conv
,
num_channels
=
num_filters
,
reduction_ratio
=
16
,
name
=
'fc'
+
name
)
name
=
'fc'
+
name
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_conv3'
)
conv
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
name
=
name
+
'_conv1'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv2'
)
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_conv3'
)
if
downsample
:
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
residual
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
if
self
.
has_se
:
conv
=
self
.
squeeze_excitation
(
input
=
conv
,
num_channels
=
num_filters
*
4
,
reduction_ratio
=
16
,
name
=
'fc'
+
name
)
name
=
'fc'
+
name
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
def
squeeze_excitation
(
self
,
input
,
num_channels
,
reduction_ratio
,
name
=
None
):
def
squeeze_excitation
(
self
,
input
,
num_channels
,
reduction_ratio
,
name
=
None
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_sqz_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_sqz_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_sqz_offset'
))
stdv
=
1.0
/
math
.
sqrt
(
squeeze
.
shape
[
1
]
*
1.0
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
'sigmoid'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_exc_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
'sigmoid'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
),
name
=
name
+
'_exc_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_exc_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
=
1
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
):
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
=
1
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
num_groups
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
name
+
'_weights'
),
param_attr
=
ParamAttr
(
initializer
=
MSRA
(),
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
self
.
_bn
(
input
=
conv
,
bn_name
=
bn_name
)
bn
=
self
.
_bn
(
input
=
conv
,
bn_name
=
bn_name
)
if
if_act
:
bn
=
fluid
.
layers
.
relu
(
bn
)
return
bn
def
_bn
(
self
,
input
,
act
=
None
,
bn_name
=
None
):
def
_bn
(
self
,
input
,
act
=
None
,
bn_name
=
None
):
norm_lr
=
0.
if
self
.
freeze_norm
else
1.
norm_decay
=
self
.
norm_decay
pattr
=
ParamAttr
(
...
...
@@ -336,7 +391,7 @@ class HRNet(object):
name
=
bn_name
+
'_offset'
,
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
global_stats
=
True
if
self
.
freeze_norm
else
False
out
=
fluid
.
layers
.
batch_norm
(
input
=
input
,
...
...
@@ -353,7 +408,7 @@ class HRNet(object):
scale
.
stop_gradient
=
True
bias
.
stop_gradient
=
True
return
out
def
__call__
(
self
,
input
):
assert
isinstance
(
input
,
Variable
)
assert
not
(
set
(
self
.
feature_maps
)
-
set
([
2
,
3
,
4
,
5
])),
\
...
...
@@ -363,15 +418,14 @@ class HRNet(object):
res
=
input
feature_maps
=
self
.
feature_maps
self
.
net
(
input
)
self
.
net
(
input
)
for
i
in
feature_maps
:
res
=
self
.
end_points
[
i
-
2
]
res
=
self
.
end_points
[
i
-
2
]
if
i
in
self
.
feature_maps
:
res_endpoints
.
append
(
res
)
if
self
.
freeze_at
>=
i
:
res
.
stop_gradient
=
True
return
OrderedDict
([(
'res{}_sum'
.
format
(
self
.
feature_maps
[
idx
]),
feat
)
for
idx
,
feat
in
enumerate
(
res_endpoints
)])
ppdet/modeling/backbones/res2net.py
浏览文件 @
1475bb05
...
...
@@ -54,31 +54,34 @@ class Res2Net(ResNet):
"""
__shared__
=
[
'norm_type'
,
'freeze_norm'
,
'weight_prefix_name'
]
def
__init__
(
self
,
depth
=
50
,
width
=
26
,
scales
=
4
,
freeze_at
=
2
,
norm_type
=
'bn'
,
freeze_norm
=
True
,
norm_decay
=
0.
,
variant
=
'b'
,
feature_maps
=
[
2
,
3
,
4
,
5
],
dcn_v2_stages
=
[],
weight_prefix_name
=
''
,
nonlocal_stages
=
[],):
super
(
Res2Net
,
self
).
__init__
(
depth
=
depth
,
freeze_at
=
freeze_at
,
norm_type
=
norm_type
,
freeze_norm
=
freeze_norm
,
norm_decay
=
norm_decay
,
variant
=
variant
,
feature_maps
=
feature_maps
,
dcn_v2_stages
=
dcn_v2_stages
,
weight_prefix_name
=
weight_prefix_name
,
nonlocal_stages
=
nonlocal_stages
)
assert
depth
>=
50
,
"just support depth>=50 in res2net, but got depth="
.
format
(
depth
)
def
__init__
(
self
,
depth
=
50
,
width
=
26
,
scales
=
4
,
freeze_at
=
2
,
norm_type
=
'bn'
,
freeze_norm
=
True
,
norm_decay
=
0.
,
variant
=
'b'
,
feature_maps
=
[
2
,
3
,
4
,
5
],
dcn_v2_stages
=
[],
weight_prefix_name
=
''
,
nonlocal_stages
=
[],
):
super
(
Res2Net
,
self
).
__init__
(
depth
=
depth
,
freeze_at
=
freeze_at
,
norm_type
=
norm_type
,
freeze_norm
=
freeze_norm
,
norm_decay
=
norm_decay
,
variant
=
variant
,
feature_maps
=
feature_maps
,
dcn_v2_stages
=
dcn_v2_stages
,
weight_prefix_name
=
weight_prefix_name
,
nonlocal_stages
=
nonlocal_stages
)
assert
depth
>=
50
,
"just support depth>=50 in res2net, but got depth="
.
format
(
depth
)
# res2net config
self
.
scales
=
scales
self
.
width
=
width
...
...
@@ -96,60 +99,62 @@ class Res2Net(ResNet):
name
,
dcn_v2
=
False
):
conv0
=
self
.
_conv_norm
(
input
=
input
,
num_filters
=
num_filters1
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
input
=
input
,
num_filters
=
num_filters1
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
name
+
'_branch2a'
)
xs
=
fluid
.
layers
.
split
(
conv0
,
self
.
scales
,
1
)
ys
=
[]
for
s
in
range
(
self
.
scales
-
1
):
if
s
==
0
or
stride
==
2
:
ys
.
append
(
self
.
_conv_norm
(
input
=
xs
[
s
],
num_filters
=
num_filters1
//
self
.
scales
,
stride
=
stride
,
filter_size
=
3
,
act
=
'relu'
,
name
=
name
+
'_branch2b_'
+
str
(
s
+
1
),
dcn_v2
=
dcn_v2
))
ys
.
append
(
self
.
_conv_norm
(
input
=
xs
[
s
],
num_filters
=
num_filters1
//
self
.
scales
,
stride
=
stride
,
filter_size
=
3
,
act
=
'relu'
,
name
=
name
+
'_branch2b_'
+
str
(
s
+
1
),
dcn_v2
=
dcn_v2
))
else
:
ys
.
append
(
self
.
_conv_norm
(
input
=
xs
[
s
]
+
ys
[
-
1
],
num_filters
=
num_filters1
//
self
.
scales
,
stride
=
stride
,
filter_size
=
3
,
act
=
'relu'
,
name
=
name
+
'_branch2b_'
+
str
(
s
+
1
),
dcn_v2
=
dcn_v2
))
ys
.
append
(
self
.
_conv_norm
(
input
=
xs
[
s
]
+
ys
[
-
1
],
num_filters
=
num_filters1
//
self
.
scales
,
stride
=
stride
,
filter_size
=
3
,
act
=
'relu'
,
name
=
name
+
'_branch2b_'
+
str
(
s
+
1
),
dcn_v2
=
dcn_v2
))
if
stride
==
1
:
ys
.
append
(
xs
[
-
1
])
else
:
ys
.
append
(
fluid
.
layers
.
pool2d
(
input
=
xs
[
-
1
],
pool_size
=
3
,
pool_stride
=
stride
,
pool_padding
=
1
,
pool_type
=
'avg'
))
ys
.
append
(
fluid
.
layers
.
pool2d
(
input
=
xs
[
-
1
],
pool_size
=
3
,
pool_stride
=
stride
,
pool_padding
=
1
,
pool_type
=
'avg'
))
conv1
=
fluid
.
layers
.
concat
(
ys
,
axis
=
1
)
conv2
=
self
.
_conv_norm
(
input
=
conv1
,
num_filters
=
num_filters2
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
act
=
None
,
name
=
name
+
"_branch2c"
)
short
=
self
.
_shortcut
(
input
,
num_filters2
,
stride
,
is_first
,
name
=
name
+
"_branch1"
)
short
=
self
.
_shortcut
(
input
,
num_filters2
,
stride
,
is_first
,
name
=
name
+
"_branch1"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
,
name
=
name
+
".add.output.5"
)
def
layer_warp
(
self
,
input
,
stage_num
):
"""
Args:
...
...
@@ -167,14 +172,15 @@ class Res2Net(ResNet):
ch_out
=
self
.
stage_filters
[
stage_num
-
2
]
is_first
=
False
if
stage_num
!=
2
else
True
dcn_v2
=
True
if
stage_num
in
self
.
dcn_v2_stages
else
False
num_filters1
=
self
.
num_filters1
[
stage_num
-
2
]
num_filters2
=
self
.
num_filters2
[
stage_num
-
2
]
num_filters1
=
self
.
num_filters1
[
stage_num
-
2
]
num_filters2
=
self
.
num_filters2
[
stage_num
-
2
]
nonlocal_mod
=
1000
if
stage_num
in
self
.
nonlocal_stages
:
nonlocal_mod
=
self
.
nonlocal_mod_cfg
[
self
.
depth
]
if
stage_num
==
4
else
2
nonlocal_mod
=
self
.
nonlocal_mod_cfg
[
self
.
depth
]
if
stage_num
==
4
else
2
# Make the layer name and parameter name consistent
# with ImageNet pre-trained model
conv
=
input
...
...
@@ -190,14 +196,14 @@ class Res2Net(ResNet):
is_first
=
is_first
,
name
=
conv_name
,
dcn_v2
=
dcn_v2
)
# add non local model
dim_in
=
conv
.
shape
[
1
]
nonlocal_name
=
"nonlocal_conv{}"
.
format
(
stage_num
)
nonlocal_name
=
"nonlocal_conv{}"
.
format
(
stage_num
)
if
i
%
nonlocal_mod
==
nonlocal_mod
-
1
:
conv
=
add_space_nonlocal
(
conv
,
dim_in
,
dim_in
,
nonlocal_name
+
'_{}'
.
format
(
i
),
int
(
dim_in
/
2
)
)
conv
=
add_space_nonlocal
(
conv
,
dim_in
,
dim_in
,
nonlocal_name
+
'_{}'
.
format
(
i
)
,
int
(
dim_in
/
2
)
)
return
conv
...
...
@@ -217,7 +223,7 @@ class Res2NetC5(Res2Net):
variant
=
'b'
,
feature_maps
=
[
5
],
weight_prefix_name
=
''
):
super
(
Res2NetC5
,
self
).
__init__
(
depth
,
width
,
scales
,
freeze_at
,
norm_type
,
freeze_norm
,
norm_decay
,
variant
,
feature_maps
)
super
(
Res2NetC5
,
self
).
__init__
(
depth
,
width
,
scales
,
freeze_at
,
norm_type
,
freeze_norm
,
norm_decay
,
variant
,
feature_maps
)
self
.
severed_head
=
True
ppdet/modeling/losses/iou_loss.py
浏览文件 @
1475bb05
...
...
@@ -36,16 +36,25 @@ class IouLoss(object):
max_height (int): max height of input to support random shape input
max_width (int): max width of input to support random shape input
"""
def
__init__
(
self
,
loss_weight
=
2.5
,
max_height
=
608
,
max_width
=
608
):
def
__init__
(
self
,
loss_weight
=
2.5
,
max_height
=
608
,
max_width
=
608
):
self
.
_loss_weight
=
loss_weight
self
.
_MAX_HI
=
max_height
self
.
_MAX_WI
=
max_width
def
__call__
(
self
,
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
eps
=
1.e-10
):
def
__call__
(
self
,
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
eps
=
1.e-10
):
'''
Args:
x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h
...
...
@@ -55,10 +64,10 @@ class IouLoss(object):
batch_size (int): training batch size
eps (float): the decimal to prevent the denominator eqaul zero
'''
x1
,
y1
,
x2
,
y2
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
batch_size
,
False
)
x1g
,
y1g
,
x2g
,
y2g
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
True
)
x1
,
y1
,
x2
,
y2
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
batch_size
,
False
)
x1g
,
y1g
,
x2g
,
y2g
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
True
)
x2
=
fluid
.
layers
.
elementwise_max
(
x1
,
x2
)
y2
=
fluid
.
layers
.
elementwise_max
(
y1
,
y2
)
...
...
@@ -76,14 +85,16 @@ class IouLoss(object):
intsctk
=
(
xkis2
-
xkis1
)
*
(
ykis2
-
ykis1
)
intsctk
=
intsctk
*
fluid
.
layers
.
greater_than
(
xkis2
,
xkis1
)
*
fluid
.
layers
.
greater_than
(
ykis2
,
ykis1
)
unionk
=
(
x2
-
x1
)
*
(
y2
-
y1
)
+
(
x2g
-
x1g
)
*
(
y2g
-
y1g
)
-
intsctk
+
eps
unionk
=
(
x2
-
x1
)
*
(
y2
-
y1
)
+
(
x2g
-
x1g
)
*
(
y2g
-
y1g
)
-
intsctk
+
eps
iouk
=
intsctk
/
unionk
loss_iou
=
1.
-
iouk
*
iouk
loss_iou
=
loss_iou
*
self
.
_loss_weight
return
loss_iou
def
_bbox_transform
(
self
,
dcx
,
dcy
,
dw
,
dh
,
anchors
,
downsample_ratio
,
batch_size
,
is_gt
):
def
_bbox_transform
(
self
,
dcx
,
dcy
,
dw
,
dh
,
anchors
,
downsample_ratio
,
batch_size
,
is_gt
):
grid_x
=
int
(
self
.
_MAX_WI
/
downsample_ratio
)
grid_y
=
int
(
self
.
_MAX_HI
/
downsample_ratio
)
an_num
=
len
(
anchors
)
//
2
...
...
@@ -125,14 +136,16 @@ class IouLoss(object):
anchor_w_np
=
np
.
array
(
anchor_w_
)
anchor_w_np
=
np
.
reshape
(
anchor_w_np
,
newshape
=
[
1
,
an_num
,
1
,
1
])
anchor_w_np
=
np
.
tile
(
anchor_w_np
,
reps
=
[
batch_size
,
1
,
grid_y
,
grid_x
])
anchor_w_max
=
self
.
_create_tensor_from_numpy
(
anchor_w_np
.
astype
(
np
.
float32
))
anchor_w_max
=
self
.
_create_tensor_from_numpy
(
anchor_w_np
.
astype
(
np
.
float32
))
anchor_w
=
fluid
.
layers
.
crop
(
x
=
anchor_w_max
,
shape
=
dcx
)
anchor_w
.
stop_gradient
=
True
anchor_h_
=
[
anchors
[
i
]
for
i
in
range
(
0
,
len
(
anchors
))
if
i
%
2
==
1
]
anchor_h_np
=
np
.
array
(
anchor_h_
)
anchor_h_np
=
np
.
reshape
(
anchor_h_np
,
newshape
=
[
1
,
an_num
,
1
,
1
])
anchor_h_np
=
np
.
tile
(
anchor_h_np
,
reps
=
[
batch_size
,
1
,
grid_y
,
grid_x
])
anchor_h_max
=
self
.
_create_tensor_from_numpy
(
anchor_h_np
.
astype
(
np
.
float32
))
anchor_h_max
=
self
.
_create_tensor_from_numpy
(
anchor_h_np
.
astype
(
np
.
float32
))
anchor_h
=
fluid
.
layers
.
crop
(
x
=
anchor_h_max
,
shape
=
dcx
)
anchor_h
.
stop_gradient
=
True
# e^tw e^th
...
...
@@ -147,7 +160,6 @@ class IouLoss(object):
exp_dh
.
stop_gradient
=
True
pw
.
stop_gradient
=
True
ph
.
stop_gradient
=
True
x1
=
cx
-
0.5
*
pw
y1
=
cy
-
0.5
*
ph
...
...
@@ -169,4 +181,3 @@ class IouLoss(object):
default_initializer
=
NumpyArrayInitializer
(
numpy_array
))
paddle_array
.
stop_gradient
=
True
return
paddle_array
ppdet/modeling/losses/yolo_loss.py
浏览文件 @
1475bb05
...
...
@@ -131,8 +131,8 @@ class YOLOv3Loss(object):
loss_h
=
fluid
.
layers
.
abs
(
h
-
th
)
*
tscale_tobj
loss_h
=
fluid
.
layers
.
reduce_sum
(
loss_h
,
dim
=
[
1
,
2
,
3
])
if
self
.
_iou_loss
is
not
None
:
loss_iou
=
self
.
_iou_loss
(
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample
,
self
.
_batch_size
)
loss_iou
=
self
.
_iou_loss
(
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample
,
self
.
_batch_size
)
loss_iou
=
loss_iou
*
tscale_tobj
loss_iou
=
fluid
.
layers
.
reduce_sum
(
loss_iou
,
dim
=
[
1
,
2
,
3
])
loss_ious
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou
))
...
...
ppdet/modeling/roi_heads/cascade_head.py
浏览文件 @
1475bb05
...
...
@@ -219,29 +219,33 @@ class CascadeBBoxHead(object):
return
{
'bbox'
:
box_out
,
'score'
:
boxes_cls_prob_mean
}
pred_result
=
self
.
nms
(
bboxes
=
box_out
,
scores
=
boxes_cls_prob_mean
)
return
{
"bbox"
:
pred_result
}
def
get_prediction_cls_aware
(
self
,
im_info
,
im_shape
,
cascade_cls_prob
,
cascade_decoded_box
,
cascade_bbox_reg_weights
):
def
get_prediction_cls_aware
(
self
,
im_info
,
im_shape
,
cascade_cls_prob
,
cascade_decoded_box
,
cascade_bbox_reg_weights
):
'''
get_prediction_cls_aware: predict bbox for each class
'''
cascade_num_stage
=
3
cascade_eval_weight
=
[
0.2
,
0.3
,
0.5
]
# merge 3 stages results
sum_cascade_cls_prob
=
sum
([
prob
*
cascade_eval_weight
[
idx
]
for
idx
,
prob
in
enumerate
(
cascade_cls_prob
)
])
sum_cascade_decoded_box
=
sum
([
bbox
*
cascade_eval_weight
[
idx
]
for
idx
,
bbox
in
enumerate
(
cascade_decoded_box
)
])
sum_cascade_cls_prob
=
sum
([
prob
*
cascade_eval_weight
[
idx
]
for
idx
,
prob
in
enumerate
(
cascade_cls_prob
)
])
sum_cascade_decoded_box
=
sum
([
bbox
*
cascade_eval_weight
[
idx
]
for
idx
,
bbox
in
enumerate
(
cascade_decoded_box
)
])
self
.
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale_lod
=
fluid
.
layers
.
sequence_expand
(
self
.
im_scale
,
sum_cascade_decoded_box
)
im_scale_lod
=
fluid
.
layers
.
sequence_expand
(
self
.
im_scale
,
sum_cascade_decoded_box
)
sum_cascade_decoded_box
=
sum_cascade_decoded_box
/
im_scale_lod
decoded_bbox
=
sum_cascade_decoded_box
decoded_bbox
=
fluid
.
layers
.
reshape
(
decoded_bbox
,
shape
=
(
-
1
,
self
.
num_classes
,
4
)
)
decoded_bbox
=
fluid
.
layers
.
reshape
(
decoded_bbox
,
shape
=
(
-
1
,
self
.
num_classes
,
4
))
box_out
=
fluid
.
layers
.
box_clip
(
input
=
decoded_bbox
,
im_info
=
im_shape
)
pred_result
=
self
.
nms
(
bboxes
=
box_out
,
scores
=
sum_cascade_cls_prob
)
return
{
"bbox"
:
pred_result
}
...
...
ppdet/utils/oid_eval.py
浏览文件 @
1475bb05
此差异已折叠。
点击以展开。
slim/sensitive/sensitive.py
浏览文件 @
1475bb05
...
...
@@ -35,7 +35,6 @@ set_paddle_flags(
FLAGS_eager_delete_tensor_gb
=
0
,
# enable GC to save memory
)
from
paddle
import
fluid
from
ppdet.experimental
import
mixed_precision_context
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
...
...
@@ -85,11 +84,16 @@ def main():
eval_prog
=
eval_prog
.
clone
(
True
)
if
FLAGS
.
print_params
:
print
(
"-------------------------All parameters in current graph----------------------"
)
print
(
"-------------------------All parameters in current graph----------------------"
)
for
block
in
eval_prog
.
blocks
:
for
param
in
block
.
all_parameters
():
print
(
"parameter name: {}
\t
shape: {}"
.
format
(
param
.
name
,
param
.
shape
))
print
(
"------------------------------------------------------------------------------"
)
print
(
"parameter name: {}
\t
shape: {}"
.
format
(
param
.
name
,
param
.
shape
))
print
(
"------------------------------------------------------------------------------"
)
return
eval_reader
=
create_reader
(
cfg
.
EvalReader
)
...
...
@@ -104,7 +108,7 @@ def main():
if
cfg
.
metric
==
'WIDERFACE'
:
extra_keys
=
[
'im_id'
,
'im_shape'
,
'gt_box'
]
eval_keys
,
eval_values
,
eval_cls
=
parse_fetches
(
fetches
,
eval_prog
,
extra_keys
)
extra_keys
)
exe
.
run
(
startup_prog
)
...
...
@@ -133,16 +137,16 @@ def main():
compiled_eval_prog
=
fluid
.
compiler
.
CompiledProgram
(
program
)
results
=
eval_run
(
exe
,
compiled_eval_prog
,
eval_loader
,
eval_keys
,
eval_values
,
eval_cls
)
results
=
eval_run
(
exe
,
compiled_eval_prog
,
eval_loader
,
eval_keys
,
eval_values
,
eval_cls
)
resolution
=
None
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
dataset
=
cfg
[
'EvalReader'
][
'dataset'
]
box_ap_stats
=
eval_results
(
results
,
cfg
.
metric
,
cfg
.
num_classes
,
results
,
cfg
.
metric
,
cfg
.
num_classes
,
resolution
,
is_bbox_normalized
,
FLAGS
.
output_eval
,
...
...
@@ -151,18 +155,21 @@ def main():
return
box_ap_stats
[
0
]
pruned_params
=
FLAGS
.
pruned_params
assert
(
FLAGS
.
pruned_params
is
not
None
),
"FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
assert
(
FLAGS
.
pruned_params
is
not
None
),
"FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params
=
FLAGS
.
pruned_params
.
strip
().
split
(
","
)
logger
.
info
(
"pruned params: {}"
.
format
(
pruned_params
))
pruned_ratios
=
[
float
(
n
)
for
n
in
FLAGS
.
pruned_ratios
.
strip
().
split
(
" "
)]
logger
.
info
(
"pruned ratios: {}"
.
format
(
pruned_ratios
))
sensitivity
(
eval_prog
,
place
,
pruned_params
,
test
,
sensitivities_file
=
FLAGS
.
sensitivities_file
,
pruned_ratios
=
pruned_ratios
)
sensitivity
(
eval_prog
,
place
,
pruned_params
,
test
,
sensitivities_file
=
FLAGS
.
sensitivities_file
,
pruned_ratios
=
pruned_ratios
)
if
__name__
==
'__main__'
:
...
...
@@ -195,7 +202,8 @@ if __name__ == '__main__':
"--pruned_ratios"
,
default
=
"0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9"
,
type
=
str
,
help
=
"The ratios pruned iteratively for each parameter when calculating sensitivities."
)
help
=
"The ratios pruned iteratively for each parameter when calculating sensitivities."
)
parser
.
add_argument
(
"-P"
,
"--print_params"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录