infer.py 30.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
Q
qingqing01 已提交
18 19 20 21
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
22
import math
Q
qingqing01 已提交
23 24 25 26
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
27 28 29 30 31
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

32
from benchmark_utils import PaddleInferBenchmark
33
from picodet_postprocess import PicoDetPostProcess
34
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, decode_image
W
wangguanzhong 已提交
35
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
36
from visualize import visualize_box_mask
37
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
38

Q
qingqing01 已提交
39 40
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
41 42 43
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD',
    'StrongBaseline', 'STGCN'
Q
qingqing01 已提交
44 45 46
}


W
wangguanzhong 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
64 65 66
class Detector(object):
    """
    Args:
67
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
68
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
69
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
70
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
71
        batch_size (int): size of pre batch in inference
72 73 74
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
75 76 77 78
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
79
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
80 81
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
Q
qingqing01 已提交
82 83
    """

W
wangguanzhong 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    def __init__(
            self,
            model_dir,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
96
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
97 98 99
            output_dir='output',
            threshold=0.5, ):
        self.pred_config = self.set_config(model_dir)
100
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
101 102
            model_dir,
            run_mode=run_mode,
103
            batch_size=batch_size,
Q
qingqing01 已提交
104
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
105
            device=device,
106
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
107 108
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
109
            trt_opt_shape=trt_opt_shape,
110 111
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
112 113
            enable_mkldnn=enable_mkldnn,
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16)
G
Guanghua Yu 已提交
114 115
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
116 117 118 119 120 121
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
122

C
cnn 已提交
123
    def preprocess(self, image_list):
Q
qingqing01 已提交
124 125 126 127 128
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
129 130 131 132

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
133
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
134 135 136
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
137 138 139 140 141
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

Q
qingqing01 已提交
142 143
        return inputs

W
wangguanzhong 已提交
144
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
145
        # postprocess output of predictor
W
wangguanzhong 已提交
146 147 148 149 150 151
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
152

W
wangguanzhong 已提交
153
    def predict(self, repeats=1):
Q
qingqing01 已提交
154 155
        '''
        Args:
W
wangguanzhong 已提交
156
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
157
        Returns:
W
wangguanzhong 已提交
158
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
159
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
160
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
161
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
162
        '''
W
wangguanzhong 已提交
163
        # model prediction
W
wangguanzhong 已提交
164
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
165 166 167 168 169
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
170 171
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
172
            if self.pred_config.mask:
Q
qingqing01 已提交
173 174
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
            results[k] = np.concatenate(v)
        return results
Q
qingqing01 已提交
189

W
wangguanzhong 已提交
190 191
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
192

W
wangguanzhong 已提交
193 194 195 196 197 198
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
199
        results = []
W
wangguanzhong 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

        results = self.merge_batch_result(results)
Q
qingqing01 已提交
258 259
        return results

W
wangguanzhong 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
J
JYChen 已提交
277
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame], visual=False)

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
300

Q
qingqing01 已提交
301

G
Guanghua Yu 已提交
302 303 304 305
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
306
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
307
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
308
        batch_size (int): size of pre batch in inference
309 310 311
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
312 313 314 315
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
316
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
317 318 319
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
320 321
    """

W
wangguanzhong 已提交
322 323
    def __init__(
            self,
G
Guanghua Yu 已提交
324
            model_dir,
W
wangguanzhong 已提交
325 326 327 328 329 330 331 332 333
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
334
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
335 336 337 338 339
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
340
            run_mode=run_mode,
341
            batch_size=batch_size,
342 343
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
344
            trt_opt_shape=trt_opt_shape,
345 346
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
347
            enable_mkldnn=enable_mkldnn,
348
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
349 350
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
351

W
wangguanzhong 已提交
352
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
353 354
        '''
        Args:
W
wangguanzhong 已提交
355
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
356
        Returns:
W
wangguanzhong 已提交
357
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
358 359
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
360 361 362 363 364
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
365 366
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
367 368
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
369
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
370
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
371 372
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
373

W
wangguanzhong 已提交
374
        result = dict(
W
wangguanzhong 已提交
375 376 377 378
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
379
        return result
G
Guanghua Yu 已提交
380 381


382 383 384 385 386
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
387
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
388 389 390 391 392 393 394
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
395 396
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
397 398
    """

W
wangguanzhong 已提交
399 400
    def __init__(
            self,
401
            model_dir,
W
wangguanzhong 已提交
402 403 404 405 406 407 408 409 410
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
411
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
412 413 414 415 416
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
417 418 419 420 421 422 423
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
424
            enable_mkldnn=enable_mkldnn,
425
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
442

W
wangguanzhong 已提交
443
    def predict(self, repeats=1):
444 445
        '''
        Args:
W
wangguanzhong 已提交
446
            repeats (int): repeat number for prediction
447
        Returns:
W
wangguanzhong 已提交
448
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
465 466
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
467 468


C
cnn 已提交
469
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
470 471
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
472 473
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
474 475 476 477 478
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
479 480
    im_shape = []
    scale_factor = []
481 482 483 484 485 486 487 488
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
489 490 491 492
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
493 494
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
495 496 497 498 499 500 501 502 503 504 505 506

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
526
        self.mask = False
527
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
528 529
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
530 531 532
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
533 534 535 536
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
Q
qingqing01 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
560
                   run_mode='paddle',
Q
qingqing01 已提交
561
                   batch_size=1,
G
Guanghua Yu 已提交
562
                   device='CPU',
563 564 565 566
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
567
                   trt_opt_shape=640,
568 569
                   trt_calib_mode=False,
                   cpu_threads=1,
570 571
                   enable_mkldnn=False,
                   enable_mkldnn_bfloat16=False):
Q
qingqing01 已提交
572 573 574
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
575
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
576
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
577 578 579 580
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
581 582
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
Q
qingqing01 已提交
583 584 585
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
586
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
587
    """
588
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
589
        raise ValueError(
G
Guanghua Yu 已提交
590 591
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
592 593 594
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
595
    if device == 'GPU':
Q
qingqing01 已提交
596 597 598
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
599
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
600
    elif device == 'XPU':
601
        config.enable_lite_engine()
G
Guanghua Yu 已提交
602
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
603 604
    else:
        config.disable_gpu()
605 606
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
607 608 609 610
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
611 612
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
613 614 615 616 617
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
618

G
Guanghua Yu 已提交
619 620 621 622 623
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
624 625
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
626
            workspace_size=1 << 25,
Q
qingqing01 已提交
627 628 629 630
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
631
            use_calib_mode=trt_calib_mode)
632 633

        if use_dynamic_shape:
634 635 636 637 638 639 640 641 642
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
643 644 645
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
646 647 648 649 650 651 652 653

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = create_predictor(config)
654
    return predictor, config
Q
qingqing01 已提交
655 656


G
Guanghua Yu 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
688
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
689
    # visualize the predict result
C
cnn 已提交
690 691
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
692
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
693
        im_results = {}
W
wangguanzhong 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
709

C
cnn 已提交
710 711 712 713 714 715 716 717 718
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
719 720 721 722 723 724 725 726 727 728


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
729 730 731 732
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
733
    detector_func = 'Detector'
W
wangguanzhong 已提交
734
    if arch == 'SOLOv2':
735
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
736
    elif arch == 'PicoDet':
737 738
        detector_func = 'DetectorPicoDet'

W
wangguanzhong 已提交
739
    detector = eval(detector_func)(FLAGS.model_dir,
740 741 742 743 744 745 746 747
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
W
wangguanzhong 已提交
748
                                   enable_mkldnn=FLAGS.enable_mkldnn,
749
                                   enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
750 751
                                   threshold=FLAGS.threshold,
                                   output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
752

Q
qingqing01 已提交
753
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
754
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
755
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
756 757
    else:
        # predict from image
C
cnn 已提交
758 759
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
760
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
761
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
G
Guanghua Yu 已提交
762 763 764
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
765
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
766
            model_dir = FLAGS.model_dir
767
            model_info = {
768 769
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
770
            }
W
wangguanzhong 已提交
771
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
772 773 774 775


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
776
    parser = argsparser()
Q
qingqing01 已提交
777 778
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
779 780 781 782
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
783

784 785
    assert not (FLAGS.enable_mkldnn==False and FLAGS.enable_mkldnn_bfloat16==True), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'

Q
qingqing01 已提交
786
    main()