yolo_fpn.py 34.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from ppdet.core.workspace import register, serializable
20
from ..backbones.darknet import ConvBNLayer
21 22
from ..shape_spec import ShapeSpec

23
__all__ = ['YOLOv3FPN', 'PPYOLOFPN', 'PPYOLOTinyFPN', 'PPYOLOPAN']
24

Q
qingqing01 已提交
25

26
def add_coord(x, data_format):
W
wangxinxin08 已提交
27
    b = x.shape[0]
28
    if data_format == 'NCHW':
W
wangxinxin08 已提交
29 30 31 32 33 34 35
        h = x.shape[2]
        w = x.shape[3]
    else:
        h = x.shape[1]
        w = x.shape[2]

    gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1.
36
    if data_format == 'NCHW':
W
wangxinxin08 已提交
37 38 39 40 41 42
        gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
    else:
        gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
    gx.stop_gradient = True

    gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1.
43
    if data_format == 'NCHW':
W
wangxinxin08 已提交
44 45 46 47 48 49 50 51
        gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
    else:
        gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
    gy.stop_gradient = True

    return gx, gy


Q
qingqing01 已提交
52
class YoloDetBlock(nn.Layer):
53 54 55 56 57 58 59
    def __init__(self,
                 ch_in,
                 channel,
                 norm_type,
                 freeze_norm=False,
                 name='',
                 data_format='NCHW'):
W
wangxinxin08 已提交
60 61 62 63 64 65 66
        """
        YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767

        Args:
            ch_in (int): input channel
            channel (int): base channel
            norm_type (str): batch norm type
67
            freeze_norm (bool): whether to freeze norm, default False
W
wangxinxin08 已提交
68 69 70
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
Q
qingqing01 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        super(YoloDetBlock, self).__init__()
        self.ch_in = ch_in
        self.channel = channel
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)
        conv_def = [
            ['conv0', ch_in, channel, 1, '.0.0'],
            ['conv1', channel, channel * 2, 3, '.0.1'],
            ['conv2', channel * 2, channel, 1, '.1.0'],
            ['conv3', channel, channel * 2, 3, '.1.1'],
            ['route', channel * 2, channel, 1, '.2'],
        ]

        self.conv_module = nn.Sequential()
        for idx, (conv_name, ch_in, ch_out, filter_size,
                  post_name) in enumerate(conv_def):
            self.conv_module.add_sublayer(
                conv_name,
                ConvBNLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=filter_size,
                    padding=(filter_size - 1) // 2,
                    norm_type=norm_type,
95
                    freeze_norm=freeze_norm,
96
                    data_format=data_format,
Q
qingqing01 已提交
97 98 99 100 101 102 103 104
                    name=name + post_name))

        self.tip = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            padding=1,
            norm_type=norm_type,
105
            freeze_norm=freeze_norm,
106
            data_format=data_format,
Q
qingqing01 已提交
107 108 109 110 111 112 113 114
            name=name + '.tip')

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


W
wangxinxin08 已提交
115
class SPP(nn.Layer):
116 117 118 119 120 121
    def __init__(self,
                 ch_in,
                 ch_out,
                 k,
                 pool_size,
                 norm_type,
122 123
                 freeze_norm=False,
                 name='',
W
wangxinxin08 已提交
124
                 act='leaky',
125
                 data_format='NCHW'):
W
wangxinxin08 已提交
126 127 128 129 130 131 132 133
        """
        SPP layer, which consist of four pooling layer follwed by conv layer

        Args:
            ch_in (int): input channel of conv layer
            ch_out (int): output channel of conv layer
            k (int): kernel size of conv layer
            norm_type (str): batch norm type
134
            freeze_norm (bool): whether to freeze norm, default False
W
wangxinxin08 已提交
135
            name (str): layer name
136
            act (str): activation function
W
wangxinxin08 已提交
137 138
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
139 140
        super(SPP, self).__init__()
        self.pool = []
W
wangxinxin08 已提交
141
        self.data_format = data_format
W
wangxinxin08 已提交
142 143 144 145 146 147 148
        for size in pool_size:
            pool = self.add_sublayer(
                '{}.pool1'.format(name),
                nn.MaxPool2D(
                    kernel_size=size,
                    stride=1,
                    padding=size // 2,
149
                    data_format=data_format,
W
wangxinxin08 已提交
150 151 152
                    ceil_mode=False))
            self.pool.append(pool)
        self.conv = ConvBNLayer(
153 154 155 156 157
            ch_in,
            ch_out,
            k,
            padding=k // 2,
            norm_type=norm_type,
158
            freeze_norm=freeze_norm,
159
            name=name,
W
wangxinxin08 已提交
160
            act=act,
161
            data_format=data_format)
W
wangxinxin08 已提交
162 163 164 165 166

    def forward(self, x):
        outs = [x]
        for pool in self.pool:
            outs.append(pool(x))
W
wangxinxin08 已提交
167 168 169 170 171
        if self.data_format == "NCHW":
            y = paddle.concat(outs, axis=1)
        else:
            y = paddle.concat(outs, axis=-1)

W
wangxinxin08 已提交
172 173 174 175 176
        y = self.conv(y)
        return y


class DropBlock(nn.Layer):
177
    def __init__(self, block_size, keep_prob, name, data_format='NCHW'):
W
wangxinxin08 已提交
178 179 180 181 182 183 184 185 186
        """
        DropBlock layer, see https://arxiv.org/abs/1810.12890

        Args:
            block_size (int): block size
            keep_prob (int): keep probability
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
187 188 189 190
        super(DropBlock, self).__init__()
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.name = name
191
        self.data_format = data_format
W
wangxinxin08 已提交
192 193 194 195 196 197

    def forward(self, x):
        if not self.training or self.keep_prob == 1:
            return x
        else:
            gamma = (1. - self.keep_prob) / (self.block_size**2)
198 199 200 201 202
            if self.data_format == 'NCHW':
                shape = x.shape[2:]
            else:
                shape = x.shape[1:3]
            for s in shape:
W
wangxinxin08 已提交
203 204 205 206
                gamma *= s / (s - self.block_size + 1)

            matrix = paddle.cast(paddle.rand(x.shape, x.dtype) < gamma, x.dtype)
            mask_inv = F.max_pool2d(
207 208 209 210 211
                matrix,
                self.block_size,
                stride=1,
                padding=self.block_size // 2,
                data_format=self.data_format)
W
wangxinxin08 已提交
212 213 214 215 216 217
            mask = 1. - mask_inv
            y = x * mask * (mask.numel() / mask.sum())
            return y


class CoordConv(nn.Layer):
218 219 220 221 222 223
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 padding,
                 norm_type,
224 225
                 freeze_norm=False,
                 name='',
226
                 data_format='NCHW'):
W
wangxinxin08 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
        """
        CoordConv layer

        Args:
            ch_in (int): input channel
            ch_out (int): output channel
            filter_size (int): filter size, default 3
            padding (int): padding size, default 0
            norm_type (str): batch norm type, default bn
            name (str): layer name
            data_format (str): data format, NCHW or NHWC

        """
W
wangxinxin08 已提交
240 241 242 243 244 245 246
        super(CoordConv, self).__init__()
        self.conv = ConvBNLayer(
            ch_in + 2,
            ch_out,
            filter_size=filter_size,
            padding=padding,
            norm_type=norm_type,
247
            freeze_norm=freeze_norm,
248
            data_format=data_format,
W
wangxinxin08 已提交
249
            name=name)
250
        self.data_format = data_format
W
wangxinxin08 已提交
251 252

    def forward(self, x):
253
        gx, gy = add_coord(x, self.data_format)
254 255 256 257
        if self.data_format == 'NCHW':
            y = paddle.concat([x, gx, gy], axis=1)
        else:
            y = paddle.concat([x, gx, gy], axis=-1)
W
wangxinxin08 已提交
258 259 260 261 262
        y = self.conv(y)
        return y


class PPYOLODetBlock(nn.Layer):
263
    def __init__(self, cfg, name, data_format='NCHW'):
W
wangxinxin08 已提交
264 265 266 267 268 269 270 271
        """
        PPYOLODetBlock layer

        Args:
            cfg (list): layer configs for this block
            name (str): block name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
272 273 274
        super(PPYOLODetBlock, self).__init__()
        self.conv_module = nn.Sequential()
        for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
275 276
            kwargs.update(
                name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
277 278 279
            self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))

        conv_name, layer, args, kwargs = cfg[-1]
280 281
        kwargs.update(
            name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
282 283 284 285 286 287 288 289
        self.tip = layer(*args, **kwargs)

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


K
Kaipeng Deng 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
class PPYOLOTinyDetBlock(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 name,
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 data_format='NCHW'):
        """
        PPYOLO Tiny DetBlock layer
        Args:
            ch_in (list): input channel number
            ch_out (list): output channel number
            name (str): block name
            drop_block: whether user DropBlock
            block_size: drop block size
            keep_prob: probability to keep block in DropBlock
            data_format (str): data format, NCHW or NHWC
        """
        super(PPYOLOTinyDetBlock, self).__init__()
        self.drop_block_ = drop_block
        self.conv_module = nn.Sequential()

        cfgs = [
            # name, in channels, out channels, filter_size, 
            # stride, padding, groups
            ['.0', ch_in, ch_out, 1, 1, 0, 1],
            ['.1', ch_out, ch_out, 5, 1, 2, ch_out],
            ['.2', ch_out, ch_out, 1, 1, 0, 1],
            ['.route', ch_out, ch_out, 5, 1, 2, ch_out],
        ]
        for cfg in cfgs:
            conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, \
                    groups = cfg
            self.conv_module.add_sublayer(
                name + conv_name,
                ConvBNLayer(
                    ch_in=conv_ch_in,
                    ch_out=conv_ch_out,
                    filter_size=filter_size,
                    stride=stride,
                    padding=padding,
                    groups=groups,
                    name=name + conv_name))

        self.tip = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            groups=1,
            name=name + conv_name)

        if self.drop_block_:
            self.drop_block = DropBlock(
                block_size=block_size,
                keep_prob=keep_prob,
                data_format=data_format,
                name=name + '.dropblock')

    def forward(self, inputs):
        if self.drop_block_:
            inputs = self.drop_block(inputs)
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


W
wangxinxin08 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
class PPYOLODetBlockCSP(nn.Layer):
    def __init__(self,
                 cfg,
                 ch_in,
                 ch_out,
                 act,
                 norm_type,
                 name,
                 data_format='NCHW'):
        """
        PPYOLODetBlockCSP layer

        Args:
            cfg (list): layer configs for this block
            ch_in (int): input channel
            ch_out (int): output channel
            act (str): default mish
            name (str): block name
            data_format (str): data format, NCHW or NHWC
        """
        super(PPYOLODetBlockCSP, self).__init__()
        self.data_format = data_format
        self.conv1 = ConvBNLayer(
            ch_in,
            ch_out,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name + '.left',
            data_format=data_format)
        self.conv2 = ConvBNLayer(
            ch_in,
            ch_out,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name + '.right',
            data_format=data_format)
        self.conv3 = ConvBNLayer(
            ch_out * 2,
            ch_out * 2,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name,
            data_format=data_format)
        self.conv_module = nn.Sequential()
        for idx, (layer_name, layer, args, kwargs) in enumerate(cfg):
            kwargs.update(name=name + layer_name, data_format=data_format)
            self.conv_module.add_sublayer(layer_name, layer(*args, **kwargs))

    def forward(self, inputs):
        conv_left = self.conv1(inputs)
        conv_right = self.conv2(inputs)
        conv_left = self.conv_module(conv_left)
        if self.data_format == 'NCHW':
            conv = paddle.concat([conv_left, conv_right], axis=1)
        else:
            conv = paddle.concat([conv_left, conv_right], axis=-1)

        conv = self.conv3(conv)
        return conv, conv


Q
qingqing01 已提交
427 428 429
@register
@serializable
class YOLOv3FPN(nn.Layer):
430
    __shared__ = ['norm_type', 'data_format']
Q
qingqing01 已提交
431

432 433 434
    def __init__(self,
                 in_channels=[256, 512, 1024],
                 norm_type='bn',
435
                 freeze_norm=False,
436
                 data_format='NCHW'):
W
wangxinxin08 已提交
437 438 439 440 441 442 443 444 445
        """
        YOLOv3FPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC

        """
Q
qingqing01 已提交
446
        super(YOLOv3FPN, self).__init__()
447 448 449 450 451
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)

        self._out_channels = []
Q
qingqing01 已提交
452 453
        self.yolo_blocks = []
        self.routes = []
454
        self.data_format = data_format
Q
qingqing01 已提交
455 456
        for i in range(self.num_blocks):
            name = 'yolo_block.{}'.format(i)
457 458 459
            in_channel = in_channels[-i - 1]
            if i > 0:
                in_channel += 512 // (2**i)
Q
qingqing01 已提交
460 461 462
            yolo_block = self.add_sublayer(
                name,
                YoloDetBlock(
463
                    in_channel,
Q
qingqing01 已提交
464 465
                    channel=512 // (2**i),
                    norm_type=norm_type,
466
                    freeze_norm=freeze_norm,
467
                    data_format=data_format,
Q
qingqing01 已提交
468 469
                    name=name))
            self.yolo_blocks.append(yolo_block)
470 471
            # tip layer output channel doubled
            self._out_channels.append(1024 // (2**i))
Q
qingqing01 已提交
472 473 474 475 476 477 478 479 480 481 482 483

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=512 // (2**i),
                        ch_out=256 // (2**i),
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
484
                        freeze_norm=freeze_norm,
485
                        data_format=data_format,
Q
qingqing01 已提交
486 487 488
                        name=name))
                self.routes.append(route)

489
    def forward(self, blocks, for_mot=False):
Q
qingqing01 已提交
490 491 492
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
493 494

        # add embedding features output for multi-object tracking model
495 496
        if for_mot:
            emb_feats = []
497

Q
qingqing01 已提交
498 499
        for i, block in enumerate(blocks):
            if i > 0:
500 501 502 503
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
Q
qingqing01 已提交
504 505 506
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

507
            if for_mot:
508
                # add embedding features output
509 510
                emb_feats.append(route)

Q
qingqing01 已提交
511 512
            if i < self.num_blocks - 1:
                route = self.routes[i](route)
513 514
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
Q
qingqing01 已提交
515

516 517 518 519
        if for_mot:
            return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
        else:
            return yolo_feats
W
wangxinxin08 已提交
520

521 522 523 524 525 526 527 528
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]

W
wangxinxin08 已提交
529 530 531 532

@register
@serializable
class PPYOLOFPN(nn.Layer):
533
    __shared__ = ['norm_type', 'data_format']
W
wangxinxin08 已提交
534

535 536 537
    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 norm_type='bn',
538
                 freeze_norm=False,
539
                 data_format='NCHW',
W
wangxinxin08 已提交
540
                 coord_conv=False,
541
                 conv_block_num=2,
W
wangxinxin08 已提交
542 543 544 545
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 spp=False):
W
wangxinxin08 已提交
546 547 548 549 550 551 552
        """
        PPYOLOFPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
W
wangxinxin08 已提交
553 554 555 556 557 558
            coord_conv (bool): whether use CoordConv or not
            conv_block_num (int): conv block num of each pan block
            drop_block (bool): whether use DropBlock or not
            block_size (int): block size of DropBlock
            keep_prob (float): keep probability of DropBlock
            spp (bool): whether use spp or not
W
wangxinxin08 已提交
559 560

        """
W
wangxinxin08 已提交
561
        super(PPYOLOFPN, self).__init__()
562 563 564
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)
W
wangxinxin08 已提交
565
        # parse kwargs
W
wangxinxin08 已提交
566 567 568 569 570 571
        self.coord_conv = coord_conv
        self.drop_block = drop_block
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.spp = spp
        self.conv_block_num = conv_block_num
W
wangxinxin08 已提交
572
        self.data_format = data_format
W
wangxinxin08 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585
        if self.coord_conv:
            ConvLayer = CoordConv
        else:
            ConvLayer = ConvBNLayer

        if self.drop_block:
            dropblock_cfg = [[
                'dropblock', DropBlock, [self.block_size, self.keep_prob],
                dict()
            ]]
        else:
            dropblock_cfg = []

586
        self._out_channels = []
W
wangxinxin08 已提交
587 588
        self.yolo_blocks = []
        self.routes = []
589 590 591
        for i, ch_in in enumerate(self.in_channels[::-1]):
            if i > 0:
                ch_in += 512 // (2**i)
W
wangxinxin08 已提交
592
            channel = 64 * (2**self.num_blocks) // (2**i)
W
wangxinxin08 已提交
593 594 595 596 597 598 599
            base_cfg = []
            c_in, c_out = ch_in, channel
            for j in range(self.conv_block_num):
                base_cfg += [
                    [
                        'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
                        dict(
600 601 602
                            padding=0,
                            norm_type=norm_type,
                            freeze_norm=freeze_norm)
W
wangxinxin08 已提交
603 604 605 606
                    ],
                    [
                        'conv{}'.format(2 * j + 1), ConvBNLayer,
                        [c_out, c_out * 2, 3], dict(
607 608 609
                            padding=1,
                            norm_type=norm_type,
                            freeze_norm=freeze_norm)
W
wangxinxin08 已提交
610 611 612 613 614 615
                    ],
                ]
                c_in, c_out = c_out * 2, c_out

            base_cfg += [[
                'route', ConvLayer, [c_in, c_out, 1], dict(
616
                    padding=0, norm_type=norm_type, freeze_norm=freeze_norm)
W
wangxinxin08 已提交
617 618
            ], [
                'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
619
                    padding=1, norm_type=norm_type, freeze_norm=freeze_norm)
W
wangxinxin08 已提交
620 621 622 623 624 625 626
            ]]

            if self.conv_block_num == 2:
                if i == 0:
                    if self.spp:
                        spp_cfg = [[
                            'spp', SPP, [channel * 4, channel, 1], dict(
627 628 629
                                pool_size=[5, 9, 13],
                                norm_type=norm_type,
                                freeze_norm=freeze_norm)
W
wangxinxin08 已提交
630 631 632 633 634 635 636 637 638
                        ]]
                    else:
                        spp_cfg = []
                    cfg = base_cfg[0:3] + spp_cfg + base_cfg[
                        3:4] + dropblock_cfg + base_cfg[4:6]
                else:
                    cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
            elif self.conv_block_num == 0:
                if self.spp and i == 0:
W
wangxinxin08 已提交
639
                    spp_cfg = [[
W
wangxinxin08 已提交
640
                        'spp', SPP, [c_in * 4, c_in, 1], dict(
641 642 643
                            pool_size=[5, 9, 13],
                            norm_type=norm_type,
                            freeze_norm=freeze_norm)
W
wangxinxin08 已提交
644 645 646
                    ]]
                else:
                    spp_cfg = []
W
wangxinxin08 已提交
647
                cfg = spp_cfg + dropblock_cfg + base_cfg
W
wangxinxin08 已提交
648 649 650
            name = 'yolo_block.{}'.format(i)
            yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
            self.yolo_blocks.append(yolo_block)
651
            self._out_channels.append(channel * 2)
W
wangxinxin08 已提交
652 653 654 655 656 657
            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=channel,
W
wangxinxin08 已提交
658
                        ch_out=256 // (2**i),
W
wangxinxin08 已提交
659 660 661 662
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
663
                        freeze_norm=freeze_norm,
664
                        data_format=data_format,
W
wangxinxin08 已提交
665 666 667
                        name=name))
                self.routes.append(route)

668
    def forward(self, blocks, for_mot=False):
W
wangxinxin08 已提交
669 670 671
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
672 673

        # add embedding features output for multi-object tracking model
674 675
        if for_mot:
            emb_feats = []
676

W
wangxinxin08 已提交
677 678
        for i, block in enumerate(blocks):
            if i > 0:
679 680 681 682
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
W
wangxinxin08 已提交
683 684 685
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

686
            if for_mot:
687
                # add embedding features output
688 689
                emb_feats.append(route)

W
wangxinxin08 已提交
690 691
            if i < self.num_blocks - 1:
                route = self.routes[i](route)
692 693
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
W
wangxinxin08 已提交
694

695 696 697 698
        if for_mot:
            return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
        else:
            return yolo_feats
699 700 701 702 703 704 705 706

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]
K
Kaipeng Deng 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786


@register
@serializable
class PPYOLOTinyFPN(nn.Layer):
    __shared__ = ['norm_type', 'data_format']

    def __init__(self,
                 in_channels=[80, 56, 34],
                 detection_block_channels=[160, 128, 96],
                 norm_type='bn',
                 data_format='NCHW',
                 **kwargs):
        """
        PPYOLO Tiny FPN layer
        Args:
            in_channels (list): input channels for fpn
            detection_block_channels (list): channels in fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
            kwargs: extra key-value pairs, such as parameter of DropBlock and spp 
        """
        super(PPYOLOTinyFPN, self).__init__()
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels[::-1]
        assert len(detection_block_channels
                   ) > 0, "detection_block_channelslength should > 0"
        self.detection_block_channels = detection_block_channels
        self.data_format = data_format
        self.num_blocks = len(in_channels)
        # parse kwargs
        self.drop_block = kwargs.get('drop_block', False)
        self.block_size = kwargs.get('block_size', 3)
        self.keep_prob = kwargs.get('keep_prob', 0.9)

        self.spp_ = kwargs.get('spp', False)
        if self.spp_:
            self.spp = SPP(self.in_channels[0] * 4,
                           self.in_channels[0],
                           k=1,
                           pool_size=[5, 9, 13],
                           norm_type=norm_type,
                           name='spp')

        self._out_channels = []
        self.yolo_blocks = []
        self.routes = []
        for i, (
                ch_in, ch_out
        ) in enumerate(zip(self.in_channels, self.detection_block_channels)):
            name = 'yolo_block.{}'.format(i)
            if i > 0:
                ch_in += self.detection_block_channels[i - 1]
            yolo_block = self.add_sublayer(
                name,
                PPYOLOTinyDetBlock(
                    ch_in,
                    ch_out,
                    name,
                    drop_block=self.drop_block,
                    block_size=self.block_size,
                    keep_prob=self.keep_prob))
            self.yolo_blocks.append(yolo_block)
            self._out_channels.append(ch_out)

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=ch_out,
                        ch_out=ch_out,
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
                        data_format=data_format,
                        name=name))
                self.routes.append(route)

787
    def forward(self, blocks, for_mot=False):
K
Kaipeng Deng 已提交
788 789 790
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
791 792 793 794 795

        # add embedding features output for multi-object tracking model
        if for_mot:
            emb_feats = []

K
Kaipeng Deng 已提交
796 797 798 799 800 801 802 803 804 805 806 807
        for i, block in enumerate(blocks):
            if i == 0 and self.spp_:
                block = self.spp(block)

            if i > 0:
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

808 809 810 811
            if for_mot:
                # add embedding features output
                emb_feats.append(route)

K
Kaipeng Deng 已提交
812 813 814 815 816
            if i < self.num_blocks - 1:
                route = self.routes[i](route)
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)

817 818 819 820
        if for_mot:
            return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats}
        else:
            return yolo_feats
K
Kaipeng Deng 已提交
821 822 823 824 825 826 827 828

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]
W
wangxinxin08 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981


@register
@serializable
class PPYOLOPAN(nn.Layer):
    __shared__ = ['norm_type', 'data_format']

    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 norm_type='bn',
                 data_format='NCHW',
                 act='mish',
                 conv_block_num=3,
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 spp=False):
        """
        PPYOLOPAN layer with SPP, DropBlock and CSP connection.

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
            act (str): activation function, default mish
            conv_block_num (int): conv block num of each pan block
            drop_block (bool): whether use DropBlock or not
            block_size (int): block size of DropBlock
            keep_prob (float): keep probability of DropBlock
            spp (bool): whether use spp or not

        """
        super(PPYOLOPAN, self).__init__()
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)
        # parse kwargs
        self.drop_block = drop_block
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.spp = spp
        self.conv_block_num = conv_block_num
        self.data_format = data_format
        if self.drop_block:
            dropblock_cfg = [[
                'dropblock', DropBlock, [self.block_size, self.keep_prob],
                dict()
            ]]
        else:
            dropblock_cfg = []

        # fpn
        self.fpn_blocks = []
        self.fpn_routes = []
        fpn_channels = []
        for i, ch_in in enumerate(self.in_channels[::-1]):
            if i > 0:
                ch_in += 512 // (2**(i - 1))
            channel = 512 // (2**i)
            base_cfg = []
            for j in range(self.conv_block_num):
                base_cfg += [
                    # name, layer, args
                    [
                        '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
                        dict(
                            padding=0, act=act, norm_type=norm_type)
                    ],
                    [
                        '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
                        dict(
                            padding=1, act=act, norm_type=norm_type)
                    ]
                ]

            if i == 0 and self.spp:
                base_cfg[3] = [
                    'spp', SPP, [channel * 4, channel, 1], dict(
                        pool_size=[5, 9, 13], act=act, norm_type=norm_type)
                ]

            cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
            name = 'fpn.{}'.format(i)
            fpn_block = self.add_sublayer(
                name,
                PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
                                  data_format))
            self.fpn_blocks.append(fpn_block)
            fpn_channels.append(channel * 2)
            if i < self.num_blocks - 1:
                name = 'fpn_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=channel * 2,
                        ch_out=channel,
                        filter_size=1,
                        stride=1,
                        padding=0,
                        act=act,
                        norm_type=norm_type,
                        data_format=data_format,
                        name=name))
                self.fpn_routes.append(route)
        # pan
        self.pan_blocks = []
        self.pan_routes = []
        self._out_channels = [512 // (2**(self.num_blocks - 2)), ]
        for i in reversed(range(self.num_blocks - 1)):
            name = 'pan_transition.{}'.format(i)
            route = self.add_sublayer(
                name,
                ConvBNLayer(
                    ch_in=fpn_channels[i + 1],
                    ch_out=fpn_channels[i + 1],
                    filter_size=3,
                    stride=2,
                    padding=1,
                    act=act,
                    norm_type=norm_type,
                    data_format=data_format,
                    name=name))
            self.pan_routes = [route, ] + self.pan_routes
            base_cfg = []
            ch_in = fpn_channels[i] + fpn_channels[i + 1]
            channel = 512 // (2**i)
            for j in range(self.conv_block_num):
                base_cfg += [
                    # name, layer, args
                    [
                        '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
                        dict(
                            padding=0, act=act, norm_type=norm_type)
                    ],
                    [
                        '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
                        dict(
                            padding=1, act=act, norm_type=norm_type)
                    ]
                ]

            cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
            name = 'pan.{}'.format(i)
            pan_block = self.add_sublayer(
                name,
                PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
                                  data_format))

            self.pan_blocks = [pan_block, ] + self.pan_blocks
            self._out_channels.append(channel * 2)

        self._out_channels = self._out_channels[::-1]

982
    def forward(self, blocks, for_mot=False):
W
wangxinxin08 已提交
983 984 985
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        fpn_feats = []
986 987 988 989 990

        # add embedding features output for multi-object tracking model
        if for_mot:
            emb_feats = []

W
wangxinxin08 已提交
991 992 993 994 995 996 997 998 999
        for i, block in enumerate(blocks):
            if i > 0:
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
            route, tip = self.fpn_blocks[i](block)
            fpn_feats.append(tip)

1000 1001 1002 1003
            if for_mot:
                # add embedding features output
                emb_feats.append(route)

W
wangxinxin08 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            if i < self.num_blocks - 1:
                route = self.fpn_routes[i](route)
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)

        pan_feats = [fpn_feats[-1], ]
        route = fpn_feats[self.num_blocks - 1]
        for i in reversed(range(self.num_blocks - 1)):
            block = fpn_feats[i]
            route = self.pan_routes[i](route)
            if self.data_format == 'NCHW':
                block = paddle.concat([route, block], axis=1)
            else:
                block = paddle.concat([route, block], axis=-1)

            route, tip = self.pan_blocks[i](block)
            pan_feats.append(tip)

1022 1023 1024 1025
        if for_mot:
            return {'yolo_feats': pan_feats[::-1], 'emb_feats': emb_feats}
        else:
            return pan_feats[::-1]
W
wangxinxin08 已提交
1026 1027 1028 1029 1030 1031 1032 1033

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]