yolo_fpn.py 16.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from ppdet.core.workspace import register, serializable
20
from ..backbones.darknet import ConvBNLayer
W
wangxinxin08 已提交
21
import numpy as np
Q
qingqing01 已提交
22

23 24 25 26
from ..shape_spec import ShapeSpec

__all__ = ['YOLOv3FPN', 'PPYOLOFPN']

Q
qingqing01 已提交
27 28

class YoloDetBlock(nn.Layer):
29
    def __init__(self, ch_in, channel, norm_type, name, data_format='NCHW'):
W
wangxinxin08 已提交
30 31 32 33 34 35 36 37 38 39
        """
        YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767

        Args:
            ch_in (int): input channel
            channel (int): base channel
            norm_type (str): batch norm type
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
Q
qingqing01 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        super(YoloDetBlock, self).__init__()
        self.ch_in = ch_in
        self.channel = channel
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)
        conv_def = [
            ['conv0', ch_in, channel, 1, '.0.0'],
            ['conv1', channel, channel * 2, 3, '.0.1'],
            ['conv2', channel * 2, channel, 1, '.1.0'],
            ['conv3', channel, channel * 2, 3, '.1.1'],
            ['route', channel * 2, channel, 1, '.2'],
        ]

        self.conv_module = nn.Sequential()
        for idx, (conv_name, ch_in, ch_out, filter_size,
                  post_name) in enumerate(conv_def):
            self.conv_module.add_sublayer(
                conv_name,
                ConvBNLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=filter_size,
                    padding=(filter_size - 1) // 2,
                    norm_type=norm_type,
64
                    data_format=data_format,
Q
qingqing01 已提交
65 66 67 68 69 70 71 72
                    name=name + post_name))

        self.tip = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            padding=1,
            norm_type=norm_type,
73
            data_format=data_format,
Q
qingqing01 已提交
74 75 76 77 78 79 80 81
            name=name + '.tip')

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


W
wangxinxin08 已提交
82
class SPP(nn.Layer):
83 84 85 86 87 88 89 90
    def __init__(self,
                 ch_in,
                 ch_out,
                 k,
                 pool_size,
                 norm_type,
                 name,
                 data_format='NCHW'):
W
wangxinxin08 已提交
91 92 93 94 95 96 97 98 99 100 101
        """
        SPP layer, which consist of four pooling layer follwed by conv layer

        Args:
            ch_in (int): input channel of conv layer
            ch_out (int): output channel of conv layer
            k (int): kernel size of conv layer
            norm_type (str): batch norm type
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
102 103 104 105 106 107 108 109 110
        super(SPP, self).__init__()
        self.pool = []
        for size in pool_size:
            pool = self.add_sublayer(
                '{}.pool1'.format(name),
                nn.MaxPool2D(
                    kernel_size=size,
                    stride=1,
                    padding=size // 2,
111
                    data_format=data_format,
W
wangxinxin08 已提交
112 113 114
                    ceil_mode=False))
            self.pool.append(pool)
        self.conv = ConvBNLayer(
115 116 117 118 119 120 121
            ch_in,
            ch_out,
            k,
            padding=k // 2,
            norm_type=norm_type,
            name=name,
            data_format=data_format)
W
wangxinxin08 已提交
122 123 124 125 126 127 128 129 130 131 132

    def forward(self, x):
        outs = [x]
        for pool in self.pool:
            outs.append(pool(x))
        y = paddle.concat(outs, axis=1)
        y = self.conv(y)
        return y


class DropBlock(nn.Layer):
133
    def __init__(self, block_size, keep_prob, name, data_format='NCHW'):
W
wangxinxin08 已提交
134 135 136 137 138 139 140 141 142
        """
        DropBlock layer, see https://arxiv.org/abs/1810.12890

        Args:
            block_size (int): block size
            keep_prob (int): keep probability
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
143 144 145 146
        super(DropBlock, self).__init__()
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.name = name
147
        self.data_format = data_format
W
wangxinxin08 已提交
148 149 150 151 152 153

    def forward(self, x):
        if not self.training or self.keep_prob == 1:
            return x
        else:
            gamma = (1. - self.keep_prob) / (self.block_size**2)
154 155 156 157 158
            if self.data_format == 'NCHW':
                shape = x.shape[2:]
            else:
                shape = x.shape[1:3]
            for s in shape:
W
wangxinxin08 已提交
159 160 161 162
                gamma *= s / (s - self.block_size + 1)

            matrix = paddle.cast(paddle.rand(x.shape, x.dtype) < gamma, x.dtype)
            mask_inv = F.max_pool2d(
163 164 165 166 167
                matrix,
                self.block_size,
                stride=1,
                padding=self.block_size // 2,
                data_format=self.data_format)
W
wangxinxin08 已提交
168 169 170 171 172 173
            mask = 1. - mask_inv
            y = x * mask * (mask.numel() / mask.sum())
            return y


class CoordConv(nn.Layer):
174 175 176 177 178 179 180 181
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 padding,
                 norm_type,
                 name,
                 data_format='NCHW'):
W
wangxinxin08 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
        """
        CoordConv layer

        Args:
            ch_in (int): input channel
            ch_out (int): output channel
            filter_size (int): filter size, default 3
            padding (int): padding size, default 0
            norm_type (str): batch norm type, default bn
            name (str): layer name
            data_format (str): data format, NCHW or NHWC

        """
W
wangxinxin08 已提交
195 196 197 198 199 200 201
        super(CoordConv, self).__init__()
        self.conv = ConvBNLayer(
            ch_in + 2,
            ch_out,
            filter_size=filter_size,
            padding=padding,
            norm_type=norm_type,
202
            data_format=data_format,
W
wangxinxin08 已提交
203
            name=name)
204
        self.data_format = data_format
W
wangxinxin08 已提交
205 206 207

    def forward(self, x):
        b = x.shape[0]
208 209 210 211 212 213
        if self.data_format == 'NCHW':
            h = x.shape[2]
            w = x.shape[3]
        else:
            h = x.shape[1]
            w = x.shape[2]
W
wangxinxin08 已提交
214 215

        gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1.
216 217 218 219
        if self.data_format == 'NCHW':
            gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
        else:
            gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
W
wangxinxin08 已提交
220 221 222
        gx.stop_gradient = True

        gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1.
223 224 225 226
        if self.data_format == 'NCHW':
            gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
        else:
            gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
W
wangxinxin08 已提交
227 228
        gy.stop_gradient = True

229 230 231 232
        if self.data_format == 'NCHW':
            y = paddle.concat([x, gx, gy], axis=1)
        else:
            y = paddle.concat([x, gx, gy], axis=-1)
W
wangxinxin08 已提交
233 234 235 236 237
        y = self.conv(y)
        return y


class PPYOLODetBlock(nn.Layer):
238
    def __init__(self, cfg, name, data_format='NCHW'):
W
wangxinxin08 已提交
239 240 241 242 243 244 245 246
        """
        PPYOLODetBlock layer

        Args:
            cfg (list): layer configs for this block
            name (str): block name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
247 248 249
        super(PPYOLODetBlock, self).__init__()
        self.conv_module = nn.Sequential()
        for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
250 251
            kwargs.update(
                name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
252 253 254
            self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))

        conv_name, layer, args, kwargs = cfg[-1]
255 256
        kwargs.update(
            name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
257 258 259 260 261 262 263 264
        self.tip = layer(*args, **kwargs)

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


Q
qingqing01 已提交
265 266 267
@register
@serializable
class YOLOv3FPN(nn.Layer):
268
    __shared__ = ['norm_type', 'data_format']
Q
qingqing01 已提交
269

270 271 272 273
    def __init__(self,
                 in_channels=[256, 512, 1024],
                 norm_type='bn',
                 data_format='NCHW'):
W
wangxinxin08 已提交
274 275 276 277 278 279 280 281 282
        """
        YOLOv3FPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC

        """
Q
qingqing01 已提交
283
        super(YOLOv3FPN, self).__init__()
284 285 286 287 288
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)

        self._out_channels = []
Q
qingqing01 已提交
289 290
        self.yolo_blocks = []
        self.routes = []
291
        self.data_format = data_format
Q
qingqing01 已提交
292 293
        for i in range(self.num_blocks):
            name = 'yolo_block.{}'.format(i)
294 295 296
            in_channel = in_channels[-i - 1]
            if i > 0:
                in_channel += 512 // (2**i)
Q
qingqing01 已提交
297 298 299
            yolo_block = self.add_sublayer(
                name,
                YoloDetBlock(
300
                    in_channel,
Q
qingqing01 已提交
301 302
                    channel=512 // (2**i),
                    norm_type=norm_type,
303
                    data_format=data_format,
Q
qingqing01 已提交
304 305
                    name=name))
            self.yolo_blocks.append(yolo_block)
306 307
            # tip layer output channel doubled
            self._out_channels.append(1024 // (2**i))
Q
qingqing01 已提交
308 309 310 311 312 313 314 315 316 317 318 319

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=512 // (2**i),
                        ch_out=256 // (2**i),
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
320
                        data_format=data_format,
Q
qingqing01 已提交
321 322 323 324 325 326 327 328 329
                        name=name))
                self.routes.append(route)

    def forward(self, blocks):
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
        for i, block in enumerate(blocks):
            if i > 0:
330 331 332 333
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
Q
qingqing01 已提交
334 335 336 337 338
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

            if i < self.num_blocks - 1:
                route = self.routes[i](route)
339 340
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
Q
qingqing01 已提交
341 342

        return yolo_feats
W
wangxinxin08 已提交
343

344 345 346 347 348 349 350 351
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]

W
wangxinxin08 已提交
352 353 354 355

@register
@serializable
class PPYOLOFPN(nn.Layer):
356
    __shared__ = ['norm_type', 'data_format']
W
wangxinxin08 已提交
357

358 359 360 361 362
    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 norm_type='bn',
                 data_format='NCHW',
                 **kwargs):
W
wangxinxin08 已提交
363 364 365 366 367 368 369 370 371 372
        """
        PPYOLOFPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
            kwargs: extra key-value pairs, such as parameter of DropBlock and spp 

        """
W
wangxinxin08 已提交
373
        super(PPYOLOFPN, self).__init__()
374 375 376
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)
W
wangxinxin08 已提交
377 378 379 380 381 382 383 384
        # parse kwargs
        self.coord_conv = kwargs.get('coord_conv', False)
        self.drop_block = kwargs.get('drop_block', False)
        if self.drop_block:
            self.block_size = kwargs.get('block_size', 3)
            self.keep_prob = kwargs.get('keep_prob', 0.9)

        self.spp = kwargs.get('spp', False)
W
wangxinxin08 已提交
385
        self.conv_block_num = kwargs.get('conv_block_num', 2)
W
wangxinxin08 已提交
386
        self.data_format = data_format
W
wangxinxin08 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399
        if self.coord_conv:
            ConvLayer = CoordConv
        else:
            ConvLayer = ConvBNLayer

        if self.drop_block:
            dropblock_cfg = [[
                'dropblock', DropBlock, [self.block_size, self.keep_prob],
                dict()
            ]]
        else:
            dropblock_cfg = []

400
        self._out_channels = []
W
wangxinxin08 已提交
401 402
        self.yolo_blocks = []
        self.routes = []
403 404 405
        for i, ch_in in enumerate(self.in_channels[::-1]):
            if i > 0:
                ch_in += 512 // (2**i)
W
wangxinxin08 已提交
406
            channel = 64 * (2**self.num_blocks) // (2**i)
W
wangxinxin08 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            base_cfg = []
            c_in, c_out = ch_in, channel
            for j in range(self.conv_block_num):
                base_cfg += [
                    [
                        'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
                        dict(
                            padding=0, norm_type=norm_type)
                    ],
                    [
                        'conv{}'.format(2 * j + 1), ConvBNLayer,
                        [c_out, c_out * 2, 3], dict(
                            padding=1, norm_type=norm_type)
                    ],
                ]
                c_in, c_out = c_out * 2, c_out

            base_cfg += [[
                'route', ConvLayer, [c_in, c_out, 1], dict(
                    padding=0, norm_type=norm_type)
            ], [
                'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
                    padding=1, norm_type=norm_type)
            ]]

            if self.conv_block_num == 2:
                if i == 0:
                    if self.spp:
                        spp_cfg = [[
                            'spp', SPP, [channel * 4, channel, 1], dict(
                                pool_size=[5, 9, 13], norm_type=norm_type)
                        ]]
                    else:
                        spp_cfg = []
                    cfg = base_cfg[0:3] + spp_cfg + base_cfg[
                        3:4] + dropblock_cfg + base_cfg[4:6]
                else:
                    cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
            elif self.conv_block_num == 0:
                if self.spp and i == 0:
W
wangxinxin08 已提交
447
                    spp_cfg = [[
W
wangxinxin08 已提交
448 449
                        'spp', SPP, [c_in * 4, c_in, 1], dict(
                            pool_size=[5, 9, 13], norm_type=norm_type)
W
wangxinxin08 已提交
450 451 452
                    ]]
                else:
                    spp_cfg = []
W
wangxinxin08 已提交
453
                cfg = spp_cfg + dropblock_cfg + base_cfg
W
wangxinxin08 已提交
454 455 456
            name = 'yolo_block.{}'.format(i)
            yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
            self.yolo_blocks.append(yolo_block)
457
            self._out_channels.append(channel * 2)
W
wangxinxin08 已提交
458 459 460 461 462 463
            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=channel,
W
wangxinxin08 已提交
464
                        ch_out=256 // (2**i),
W
wangxinxin08 已提交
465 466 467 468
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
469
                        data_format=data_format,
W
wangxinxin08 已提交
470 471 472 473 474 475 476 477 478
                        name=name))
                self.routes.append(route)

    def forward(self, blocks):
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
        for i, block in enumerate(blocks):
            if i > 0:
479 480 481 482
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
W
wangxinxin08 已提交
483 484 485 486 487
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

            if i < self.num_blocks - 1:
                route = self.routes[i](route)
488 489
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
W
wangxinxin08 已提交
490

491 492 493 494 495 496 497 498 499
        return yolo_feats

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]