Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
626d2fa1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
626d2fa1
编写于
3月 18, 2021
作者:
W
wangxinxin08
提交者:
GitHub
3月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support nhwc data_format in yolov3 (#2336)
上级
2b8638d1
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
146 addition
and
37 deletion
+146
-37
dygraph/ppdet/modeling/architectures/meta_arch.py
dygraph/ppdet/modeling/architectures/meta_arch.py
+5
-1
dygraph/ppdet/modeling/architectures/yolo.py
dygraph/ppdet/modeling/architectures/yolo.py
+4
-2
dygraph/ppdet/modeling/backbones/darknet.py
dygraph/ppdet/modeling/backbones/darknet.py
+31
-7
dygraph/ppdet/modeling/heads/yolo_head.py
dygraph/ppdet/modeling/heads/yolo_head.py
+7
-2
dygraph/ppdet/modeling/necks/yolo_fpn.py
dygraph/ppdet/modeling/necks/yolo_fpn.py
+91
-23
dygraph/ppdet/modeling/ops.py
dygraph/ppdet/modeling/ops.py
+8
-2
未找到文件。
dygraph/ppdet/modeling/architectures/meta_arch.py
浏览文件 @
626d2fa1
...
...
@@ -12,10 +12,14 @@ __all__ = ['BaseArch']
@
register
class
BaseArch
(
nn
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
data_format
=
'NCHW'
):
super
(
BaseArch
,
self
).
__init__
()
self
.
data_format
=
data_format
def
forward
(
self
,
inputs
):
if
self
.
data_format
==
'NHWC'
:
image
=
inputs
[
'image'
]
inputs
[
'image'
]
=
paddle
.
transpose
(
image
,
[
0
,
2
,
3
,
1
])
self
.
inputs
=
inputs
self
.
model_arch
()
...
...
dygraph/ppdet/modeling/architectures/yolo.py
浏览文件 @
626d2fa1
...
...
@@ -11,14 +11,16 @@ __all__ = ['YOLOv3']
@
register
class
YOLOv3
(
BaseArch
):
__category__
=
'architecture'
__shared__
=
[
'data_format'
]
__inject__
=
[
'post_process'
]
def
__init__
(
self
,
backbone
=
'DarkNet'
,
neck
=
'YOLOv3FPN'
,
yolo_head
=
'YOLOv3Head'
,
post_process
=
'BBoxPostProcess'
):
super
(
YOLOv3
,
self
).
__init__
()
post_process
=
'BBoxPostProcess'
,
data_format
=
'NCHW'
):
super
(
YOLOv3
,
self
).
__init__
(
data_format
=
data_format
)
self
.
backbone
=
backbone
self
.
neck
=
neck
self
.
yolo_head
=
yolo_head
...
...
dygraph/ppdet/modeling/backbones/darknet.py
浏览文件 @
626d2fa1
...
...
@@ -35,7 +35,8 @@ class ConvBNLayer(nn.Layer):
norm_type
=
'bn'
,
norm_decay
=
0.
,
act
=
"leaky"
,
name
=
None
):
name
=
None
,
data_format
=
'NCHW'
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
conv
=
nn
.
Conv2D
(
...
...
@@ -46,9 +47,14 @@ class ConvBNLayer(nn.Layer):
padding
=
padding
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
'.conv.weights'
),
data_format
=
data_format
,
bias_attr
=
False
)
self
.
batch_norm
=
batch_norm
(
ch_out
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
name
=
name
)
ch_out
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
name
=
name
,
data_format
=
data_format
)
self
.
act
=
act
def
forward
(
self
,
inputs
):
...
...
@@ -68,7 +74,8 @@ class DownSample(nn.Layer):
padding
=
1
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
name
=
None
):
name
=
None
,
data_format
=
'NCHW'
):
super
(
DownSample
,
self
).
__init__
()
...
...
@@ -80,6 +87,7 @@ class DownSample(nn.Layer):
padding
=
padding
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
name
)
self
.
ch_out
=
ch_out
...
...
@@ -89,7 +97,13 @@ class DownSample(nn.Layer):
class
BasicBlock
(
nn
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
name
=
None
):
def
__init__
(
self
,
ch_in
,
ch_out
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
name
=
None
,
data_format
=
'NCHW'
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
ConvBNLayer
(
...
...
@@ -100,6 +114,7 @@ class BasicBlock(nn.Layer):
padding
=
0
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
name
+
'.0'
)
self
.
conv2
=
ConvBNLayer
(
ch_in
=
ch_out
,
...
...
@@ -109,6 +124,7 @@ class BasicBlock(nn.Layer):
padding
=
1
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
name
+
'.1'
)
def
forward
(
self
,
inputs
):
...
...
@@ -125,7 +141,8 @@ class Blocks(nn.Layer):
count
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
name
=
None
):
name
=
None
,
data_format
=
'NCHW'
):
super
(
Blocks
,
self
).
__init__
()
self
.
basicblock0
=
BasicBlock
(
...
...
@@ -133,6 +150,7 @@ class Blocks(nn.Layer):
ch_out
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
name
+
'.0'
)
self
.
res_out_list
=
[]
for
i
in
range
(
1
,
count
):
...
...
@@ -144,6 +162,7 @@ class Blocks(nn.Layer):
ch_out
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
block_name
))
self
.
res_out_list
.
append
(
res_out
)
self
.
ch_out
=
ch_out
...
...
@@ -161,7 +180,7 @@ DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}
@
register
@
serializable
class
DarkNet
(
nn
.
Layer
):
__shared__
=
[
'norm_type'
]
__shared__
=
[
'norm_type'
,
'data_format'
]
def
__init__
(
self
,
depth
=
53
,
...
...
@@ -169,7 +188,8 @@ class DarkNet(nn.Layer):
return_idx
=
[
2
,
3
,
4
],
num_stages
=
5
,
norm_type
=
'bn'
,
norm_decay
=
0.
):
norm_decay
=
0.
,
data_format
=
'NCHW'
):
super
(
DarkNet
,
self
).
__init__
()
self
.
depth
=
depth
self
.
freeze_at
=
freeze_at
...
...
@@ -185,6 +205,7 @@ class DarkNet(nn.Layer):
padding
=
1
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
'yolo_input'
)
self
.
downsample0
=
DownSample
(
...
...
@@ -192,6 +213,7 @@ class DarkNet(nn.Layer):
ch_out
=
32
*
2
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
'yolo_input.downsample'
)
self
.
_out_channels
=
[]
...
...
@@ -208,6 +230,7 @@ class DarkNet(nn.Layer):
stage
,
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
name
))
self
.
darknet_conv_block_list
.
append
(
conv_block
)
if
i
in
return_idx
:
...
...
@@ -221,6 +244,7 @@ class DarkNet(nn.Layer):
ch_out
=
32
*
(
2
**
(
i
+
2
)),
norm_type
=
norm_type
,
norm_decay
=
norm_decay
,
data_format
=
data_format
,
name
=
down_name
))
self
.
downsample_list
.
append
(
downsample
)
...
...
dygraph/ppdet/modeling/heads/yolo_head.py
浏览文件 @
626d2fa1
...
...
@@ -16,7 +16,7 @@ def _de_sigmoid(x, eps=1e-7):
@
register
class
YOLOv3Head
(
nn
.
Layer
):
__shared__
=
[
'num_classes'
]
__shared__
=
[
'num_classes'
,
'data_format'
]
__inject__
=
[
'loss'
]
def
__init__
(
self
,
...
...
@@ -26,7 +26,8 @@ class YOLOv3Head(nn.Layer):
num_classes
=
80
,
loss
=
'YOLOv3Loss'
,
iou_aware
=
False
,
iou_aware_factor
=
0.4
):
iou_aware_factor
=
0.4
,
data_format
=
'NCHW'
):
super
(
YOLOv3Head
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
loss
=
loss
...
...
@@ -36,6 +37,7 @@ class YOLOv3Head(nn.Layer):
self
.
parse_anchor
(
anchors
,
anchor_masks
)
self
.
num_outputs
=
len
(
self
.
anchors
)
self
.
data_format
=
data_format
self
.
yolo_outputs
=
[]
for
i
in
range
(
len
(
self
.
anchors
)):
...
...
@@ -53,6 +55,7 @@ class YOLOv3Head(nn.Layer):
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
data_format
=
data_format
,
weight_attr
=
ParamAttr
(
name
=
name
+
'.conv.weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'.conv.bias'
,
regularizer
=
L2Decay
(
0.
))))
...
...
@@ -73,6 +76,8 @@ class YOLOv3Head(nn.Layer):
yolo_outputs
=
[]
for
i
,
feat
in
enumerate
(
feats
):
yolo_output
=
self
.
yolo_outputs
[
i
](
feat
)
if
self
.
data_format
==
'NHWC'
:
yolo_output
=
paddle
.
transpose
(
yolo_output
,
[
0
,
3
,
1
,
2
])
yolo_outputs
.
append
(
yolo_output
)
if
self
.
training
:
...
...
dygraph/ppdet/modeling/necks/yolo_fpn.py
浏览文件 @
626d2fa1
...
...
@@ -26,7 +26,7 @@ __all__ = ['YOLOv3FPN', 'PPYOLOFPN']
class
YoloDetBlock
(
nn
.
Layer
):
def
__init__
(
self
,
ch_in
,
channel
,
norm_type
,
name
):
def
__init__
(
self
,
ch_in
,
channel
,
norm_type
,
name
,
data_format
=
'NCHW'
):
super
(
YoloDetBlock
,
self
).
__init__
()
self
.
ch_in
=
ch_in
self
.
channel
=
channel
...
...
@@ -51,6 +51,7 @@ class YoloDetBlock(nn.Layer):
filter_size
=
filter_size
,
padding
=
(
filter_size
-
1
)
//
2
,
norm_type
=
norm_type
,
data_format
=
data_format
,
name
=
name
+
post_name
))
self
.
tip
=
ConvBNLayer
(
...
...
@@ -59,6 +60,7 @@ class YoloDetBlock(nn.Layer):
filter_size
=
3
,
padding
=
1
,
norm_type
=
norm_type
,
data_format
=
data_format
,
name
=
name
+
'.tip'
)
def
forward
(
self
,
inputs
):
...
...
@@ -68,7 +70,14 @@ class YoloDetBlock(nn.Layer):
class
SPP
(
nn
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
k
,
pool_size
,
norm_type
,
name
):
def
__init__
(
self
,
ch_in
,
ch_out
,
k
,
pool_size
,
norm_type
,
name
,
data_format
=
'NCHW'
):
super
(
SPP
,
self
).
__init__
()
self
.
pool
=
[]
for
size
in
pool_size
:
...
...
@@ -78,10 +87,17 @@ class SPP(nn.Layer):
kernel_size
=
size
,
stride
=
1
,
padding
=
size
//
2
,
data_format
=
data_format
,
ceil_mode
=
False
))
self
.
pool
.
append
(
pool
)
self
.
conv
=
ConvBNLayer
(
ch_in
,
ch_out
,
k
,
padding
=
k
//
2
,
norm_type
=
norm_type
,
name
=
name
)
ch_in
,
ch_out
,
k
,
padding
=
k
//
2
,
norm_type
=
norm_type
,
name
=
name
,
data_format
=
data_format
)
def
forward
(
self
,
x
):
outs
=
[
x
]
...
...
@@ -93,30 +109,46 @@ class SPP(nn.Layer):
class
DropBlock
(
nn
.
Layer
):
def
__init__
(
self
,
block_size
,
keep_prob
,
name
):
def
__init__
(
self
,
block_size
,
keep_prob
,
name
,
data_format
=
'NCHW'
):
super
(
DropBlock
,
self
).
__init__
()
self
.
block_size
=
block_size
self
.
keep_prob
=
keep_prob
self
.
name
=
name
self
.
data_format
=
data_format
def
forward
(
self
,
x
):
if
not
self
.
training
or
self
.
keep_prob
==
1
:
return
x
else
:
gamma
=
(
1.
-
self
.
keep_prob
)
/
(
self
.
block_size
**
2
)
for
s
in
x
.
shape
[
2
:]:
if
self
.
data_format
==
'NCHW'
:
shape
=
x
.
shape
[
2
:]
else
:
shape
=
x
.
shape
[
1
:
3
]
for
s
in
shape
:
gamma
*=
s
/
(
s
-
self
.
block_size
+
1
)
matrix
=
paddle
.
cast
(
paddle
.
rand
(
x
.
shape
,
x
.
dtype
)
<
gamma
,
x
.
dtype
)
mask_inv
=
F
.
max_pool2d
(
matrix
,
self
.
block_size
,
stride
=
1
,
padding
=
self
.
block_size
//
2
)
matrix
,
self
.
block_size
,
stride
=
1
,
padding
=
self
.
block_size
//
2
,
data_format
=
self
.
data_format
)
mask
=
1.
-
mask_inv
y
=
x
*
mask
*
(
mask
.
numel
()
/
mask
.
sum
())
return
y
class
CoordConv
(
nn
.
Layer
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
,
padding
,
norm_type
,
name
):
def
__init__
(
self
,
ch_in
,
ch_out
,
filter_size
,
padding
,
norm_type
,
name
,
data_format
=
'NCHW'
):
super
(
CoordConv
,
self
).
__init__
()
self
.
conv
=
ConvBNLayer
(
ch_in
+
2
,
...
...
@@ -124,36 +156,53 @@ class CoordConv(nn.Layer):
filter_size
=
filter_size
,
padding
=
padding
,
norm_type
=
norm_type
,
data_format
=
data_format
,
name
=
name
)
self
.
data_format
=
data_format
def
forward
(
self
,
x
):
b
=
x
.
shape
[
0
]
h
=
x
.
shape
[
2
]
w
=
x
.
shape
[
3
]
if
self
.
data_format
==
'NCHW'
:
h
=
x
.
shape
[
2
]
w
=
x
.
shape
[
3
]
else
:
h
=
x
.
shape
[
1
]
w
=
x
.
shape
[
2
]
gx
=
paddle
.
arange
(
w
,
dtype
=
'float32'
)
/
(
w
-
1.
)
*
2.0
-
1.
gx
=
gx
.
reshape
([
1
,
1
,
1
,
w
]).
expand
([
b
,
1
,
h
,
w
])
if
self
.
data_format
==
'NCHW'
:
gx
=
gx
.
reshape
([
1
,
1
,
1
,
w
]).
expand
([
b
,
1
,
h
,
w
])
else
:
gx
=
gx
.
reshape
([
1
,
1
,
w
,
1
]).
expand
([
b
,
h
,
w
,
1
])
gx
.
stop_gradient
=
True
gy
=
paddle
.
arange
(
h
,
dtype
=
'float32'
)
/
(
h
-
1.
)
*
2.0
-
1.
gy
=
gy
.
reshape
([
1
,
1
,
h
,
1
]).
expand
([
b
,
1
,
h
,
w
])
if
self
.
data_format
==
'NCHW'
:
gy
=
gy
.
reshape
([
1
,
1
,
h
,
1
]).
expand
([
b
,
1
,
h
,
w
])
else
:
gy
=
gy
.
reshape
([
1
,
h
,
1
,
1
]).
expand
([
b
,
h
,
w
,
1
])
gy
.
stop_gradient
=
True
y
=
paddle
.
concat
([
x
,
gx
,
gy
],
axis
=
1
)
if
self
.
data_format
==
'NCHW'
:
y
=
paddle
.
concat
([
x
,
gx
,
gy
],
axis
=
1
)
else
:
y
=
paddle
.
concat
([
x
,
gx
,
gy
],
axis
=-
1
)
y
=
self
.
conv
(
y
)
return
y
class
PPYOLODetBlock
(
nn
.
Layer
):
def
__init__
(
self
,
cfg
,
name
):
def
__init__
(
self
,
cfg
,
name
,
data_format
=
'NCHW'
):
super
(
PPYOLODetBlock
,
self
).
__init__
()
self
.
conv_module
=
nn
.
Sequential
()
for
idx
,
(
conv_name
,
layer
,
args
,
kwargs
)
in
enumerate
(
cfg
[:
-
1
]):
kwargs
.
update
(
name
=
'{}.{}'
.
format
(
name
,
conv_name
))
kwargs
.
update
(
name
=
'{}.{}'
.
format
(
name
,
conv_name
),
data_format
=
data_format
)
self
.
conv_module
.
add_sublayer
(
conv_name
,
layer
(
*
args
,
**
kwargs
))
conv_name
,
layer
,
args
,
kwargs
=
cfg
[
-
1
]
kwargs
.
update
(
name
=
'{}.{}'
.
format
(
name
,
conv_name
))
kwargs
.
update
(
name
=
'{}.{}'
.
format
(
name
,
conv_name
),
data_format
=
data_format
)
self
.
tip
=
layer
(
*
args
,
**
kwargs
)
def
forward
(
self
,
inputs
):
...
...
@@ -165,9 +214,12 @@ class PPYOLODetBlock(nn.Layer):
@
register
@
serializable
class
YOLOv3FPN
(
nn
.
Layer
):
__shared__
=
[
'norm_type'
]
__shared__
=
[
'norm_type'
,
'data_format'
]
def
__init__
(
self
,
in_channels
=
[
256
,
512
,
1024
],
norm_type
=
'bn'
):
def
__init__
(
self
,
in_channels
=
[
256
,
512
,
1024
],
norm_type
=
'bn'
,
data_format
=
'NCHW'
):
super
(
YOLOv3FPN
,
self
).
__init__
()
assert
len
(
in_channels
)
>
0
,
"in_channels length should > 0"
self
.
in_channels
=
in_channels
...
...
@@ -176,6 +228,7 @@ class YOLOv3FPN(nn.Layer):
self
.
_out_channels
=
[]
self
.
yolo_blocks
=
[]
self
.
routes
=
[]
self
.
data_format
=
data_format
for
i
in
range
(
self
.
num_blocks
):
name
=
'yolo_block.{}'
.
format
(
i
)
in_channel
=
in_channels
[
-
i
-
1
]
...
...
@@ -187,6 +240,7 @@ class YOLOv3FPN(nn.Layer):
in_channel
,
channel
=
512
//
(
2
**
i
),
norm_type
=
norm_type
,
data_format
=
data_format
,
name
=
name
))
self
.
yolo_blocks
.
append
(
yolo_block
)
# tip layer output channel doubled
...
...
@@ -203,6 +257,7 @@ class YOLOv3FPN(nn.Layer):
stride
=
1
,
padding
=
0
,
norm_type
=
norm_type
,
data_format
=
data_format
,
name
=
name
))
self
.
routes
.
append
(
route
)
...
...
@@ -212,13 +267,17 @@ class YOLOv3FPN(nn.Layer):
yolo_feats
=
[]
for
i
,
block
in
enumerate
(
blocks
):
if
i
>
0
:
block
=
paddle
.
concat
([
route
,
block
],
axis
=
1
)
if
self
.
data_format
==
'NCHW'
:
block
=
paddle
.
concat
([
route
,
block
],
axis
=
1
)
else
:
block
=
paddle
.
concat
([
route
,
block
],
axis
=-
1
)
route
,
tip
=
self
.
yolo_blocks
[
i
](
block
)
yolo_feats
.
append
(
tip
)
if
i
<
self
.
num_blocks
-
1
:
route
=
self
.
routes
[
i
](
route
)
route
=
F
.
interpolate
(
route
,
scale_factor
=
2.
)
route
=
F
.
interpolate
(
route
,
scale_factor
=
2.
,
data_format
=
self
.
data_format
)
return
yolo_feats
...
...
@@ -234,9 +293,13 @@ class YOLOv3FPN(nn.Layer):
@
register
@
serializable
class
PPYOLOFPN
(
nn
.
Layer
):
__shared__
=
[
'norm_type'
]
__shared__
=
[
'norm_type'
,
'data_format'
]
def
__init__
(
self
,
in_channels
=
[
512
,
1024
,
2048
],
norm_type
=
'bn'
,
**
kwargs
):
def
__init__
(
self
,
in_channels
=
[
512
,
1024
,
2048
],
norm_type
=
'bn'
,
data_format
=
'NCHW'
,
**
kwargs
):
super
(
PPYOLOFPN
,
self
).
__init__
()
assert
len
(
in_channels
)
>
0
,
"in_channels length should > 0"
self
.
in_channels
=
in_channels
...
...
@@ -332,6 +395,7 @@ class PPYOLOFPN(nn.Layer):
stride
=
1
,
padding
=
0
,
norm_type
=
norm_type
,
data_format
=
data_format
,
name
=
name
))
self
.
routes
.
append
(
route
)
...
...
@@ -341,13 +405,17 @@ class PPYOLOFPN(nn.Layer):
yolo_feats
=
[]
for
i
,
block
in
enumerate
(
blocks
):
if
i
>
0
:
block
=
paddle
.
concat
([
route
,
block
],
axis
=
1
)
if
self
.
data_format
==
'NCHW'
:
block
=
paddle
.
concat
([
route
,
block
],
axis
=
1
)
else
:
block
=
paddle
.
concat
([
route
,
block
],
axis
=-
1
)
route
,
tip
=
self
.
yolo_blocks
[
i
](
block
)
yolo_feats
.
append
(
tip
)
if
i
<
self
.
num_blocks
-
1
:
route
=
self
.
routes
[
i
](
route
)
route
=
F
.
interpolate
(
route
,
scale_factor
=
2.
)
route
=
F
.
interpolate
(
route
,
scale_factor
=
2.
,
data_format
=
self
.
data_format
)
return
yolo_feats
...
...
dygraph/ppdet/modeling/ops.py
浏览文件 @
626d2fa1
...
...
@@ -44,7 +44,12 @@ __all__ = [
]
def
batch_norm
(
ch
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
initializer
=
None
,
name
=
None
):
def
batch_norm
(
ch
,
norm_type
=
'bn'
,
norm_decay
=
0.
,
initializer
=
None
,
name
=
None
,
data_format
=
'NCHW'
):
bn_name
=
name
+
'.bn'
if
norm_type
==
'sync_bn'
:
batch_norm
=
nn
.
SyncBatchNorm
...
...
@@ -58,7 +63,8 @@ def batch_norm(ch, norm_type='bn', norm_decay=0., initializer=None, name=None):
initializer
=
initializer
,
regularizer
=
L2Decay
(
norm_decay
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
'.offset'
,
regularizer
=
L2Decay
(
norm_decay
)))
name
=
bn_name
+
'.offset'
,
regularizer
=
L2Decay
(
norm_decay
)),
data_format
=
data_format
)
@
paddle
.
jit
.
not_to_static
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录